版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
合肥市七年级下学期期末压轴难题数学试题及答案一、选择题1.的平方根是()A.- B. C. D.2.下列现象中,()是平移A.“天问”探测器绕火星运动 B.篮球在空中飞行C.电梯的上下移动 D.将一张纸对折3.下列各点中,在第二象限的是()A. B. C. D.4.在同一平面内,下列命题是假命题的是()A.过直线外一点有且只有一条直线与已知直线相交B.已知,,三条直线,若,,则C.过直线外一点有且只有一条直线与已知直线垂直D.若三条直线两两相交,则它们有一个或三个交点5.如图,直线,点在直线上,下列结论正确的是()A. B.C. D.6.下列说法中正确的是()A.有理数和数轴上的点一一对应 B.0.304精确到十分位是0.30C.立方根是本身的数只有0 D.平方根是本身的数只有07.如图,AB∥CD,直线EF分别交AB、CD于点E、F,FH平分∠EFD,若∠1=110°,则∠2的度数为()A.45° B.40° C.55° D.35°8.如图,在平面直角坐标系中,一动点从原点出发,向右平移3个单位长度到达点,再向上平移6个单位长度到达点,再向左平移9个单位长度到达点,再向下平移12个单位长度到达点,再向右平移15个单位长度到达点……按此规律进行下去,该动点到达的点的坐标是()A. B. C. D.二、填空题9.若,则的值为10.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=_____.11.如图,DB是的高,AE是角平分线,,则______.12.如图将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠2=70°,则∠1的度数是___________.13.将长方形纸带沿EF折叠(如图1)交BF于点G,再将四边形EDCF沿BF折叠,得到四边形,EF与交于点O(如图2),最后将四边形沿直线AE折叠(如图3),使得A、E、Q、H四点在同一条直线上,且恰好落在BF上若在折叠的过程中,,且,则________.14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为__________.15.P(2m-4,1-2m)在y轴上,则m=__________.16.如图所示,动点在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点,第二次接着运动到点,第三次接着运动到点,…,按这样的运动规律,经过次运动后,动点的坐标是________.三、解答题17.计算下列各题:(1);(2)-×;(3)-++.18.求下列各式中的值:(1);(2);(3).19.完成下列证明:已知:如图,△ABC中,AD平分∠BAC,E为线段BA延长线上一点,G为BC边上一点,连接EG交AC于点H,且∠ADC+∠EGD=180°,过点D作DF∥AC交EG的延长线于点F.求证:∠E=∠F.证明:∵AD平分∠BAC(已知),∴∠1=∠2(),又∵∠ADC+∠EGD=180°(已知),∴EF∥(同旁内角互补,两直线平行).∴∠1=∠E(两直线平行,同位角相等),∠2=∠3().∴∠E=(等量代换).又∵AC∥DF(已知),∴∠3=∠F().∴∠E=∠F(等量代换).20.如图,三角形的顶点都在格点上,将三角形向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:______,______,______;(2)画出平移后三角形;(3)求三角形的面积.21.如图,数轴的正半轴上有,,三点,点,表示数和.点到点的距离与点到点的距离相等,设点所表示的数为.(1)请你求出数的值.(2)若为的相反数,为的绝对值,求的整数部分的立方根.二十二、解答题22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.如图1,已AB∥CD,∠C=∠A.(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数24.如图1,E点在BC上,∠A=∠D,AB∥CD.(1)直接写出∠ACB和∠BED的数量关系;(2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E;(3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由.25.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.①若,,则_____;若,则_____;②试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.26.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;(2)当∠1=70°,求∠EPB的度数;(一般化)(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义(如果一个数的平方等于,那么这个数叫做的平方根)即可得.【详解】解:因为,所以的平方根是,故选:C.【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.C【分析】根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.【详解】解:A.“天问”探测器绕火星运动不解析:C【分析】根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.【详解】解:A.“天问”探测器绕火星运动不是平移,故此选项不符合题意;B.篮球在空中飞行不是平移,故此选项不符合题意;C.电梯的上下移动是平移,故此选项符合题意;D.将一张纸对折不是平移,故此选项不符合题意故选:C.【点睛】本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别.3.B【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A、点在x轴上,不符合题意;B、点在第二象限,符合题意;C、点在第三象限,不符合题意;D、点在第四象限,不符合题意;故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.A【分析】根据直线相交的概念,平行线的判定,垂线的性质逐一进行判断即可得答案.【详解】解:、在同一平面内,过直线外一点有无数条直线与已知直线相交,原命题是假命题;、在同一平面内,已知,,三条直线,若,,则,是真命题;、在同一平面内,过直线外一点有且只有一条直线与已知直线垂直,是真命题;、在同一平面内,若三条直线两两相交,则它们有一个或三个交点,是真命题;故选:.【点睛】本题考查几何方面的命题真假性判断,准确理解这些命题是解题关键.5.D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB∥EF,∴∠1+∠AOF=180°,∵CD∥AB,∴∠3=∠AOC,又∵∠AOF=∠AOC−∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D.【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.6.D【分析】根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可.【详解】解:A.实数和数轴上的点一一对应,原说法错误;B.0.304精确到十分位是0.3,原说法错误;C.立方根是本身的数是0、±1,原说法错误;D.平方根是本身的数只有0,正确,故选:D.【点睛】本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键.7.D【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.【详解】解:∵∠1=110°,∴∠3=∠1=110°,∵AB∥CD,∴∠DFE=180°-∠3=180°-110°=70°,∵HF平分∠EFD,∴∠DFH=∠DFE=×70°=35°,∵AB∥CD,∴∠2=∠DFH=35°.故选:D.【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=,15=,21=,得到规律:点A2n+1的横坐标为,其中的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,,即,故A2021的横坐标为,A2021的纵坐标为,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】解:有题意得,,,,则10.-3.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.【详解】解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,∴,解得,∴a+b=解析:-3.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.【详解】解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,∴,解得,∴a+b=﹣3,故答案为:﹣3.【点睛】本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键.11.【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.【详解】∵AE是角平分线,∠BAE=26°,∴∠FAD=∠B解析:【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.【详解】∵AE是角平分线,∠BAE=26°,∴∠FAD=∠BAE=26°,∵DB是△ABC的高,∴∠AFD=90°−∠FAD=90°−26°=64°,∴∠BFE=∠AFD=64°.故答案为64°.【点睛】本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.12.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.13.32°【分析】连接EQ,根据A、E、Q、H在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,∵A、E、Q、H在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ,根据A、E、Q、H在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,∵A、E、Q、H在同一直线上∴∥∴∵∥∴∵,=90°∴=180°-90°-26°=64°由折叠的性质可知:∴=32°故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.14.,【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴圆的半径为,∴点A表示的数为,点B表示的数为.故答案为:,.【点睛】本题考查了实数与数轴,熟解析:,【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴圆的半径为,∴点A表示的数为,点B表示的数为.故答案为:,.【点睛】本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.15.2【分析】根据y轴上的点的横坐标是0列式计算即可得到m的值.【详解】∵点P(2m-4,1-2m)在y轴上,∴2m-4=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记y解析:2【分析】根据y轴上的点的横坐标是0列式计算即可得到m的值.【详解】∵点P(2m-4,1-2m)在y轴上,∴2m-4=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记y轴上的点的横坐标为0是解题的关键.16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n为奇数时,第n次运动到点(,),当n为偶数时,第n次运动到点(,),所以经过2021次运动后,动点P的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-×=-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-×=-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18.(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵,∴;(2)∵,∴,∴;(3)∵,∴,∴.【点睛】此题主要考查了平方根的定义,熟练掌握平解析:(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵,∴;(2)∵,∴,∴;(3)∵,∴,∴.【点睛】此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键.19.角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等【分析】先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3,解析:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等【分析】先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3,继而由AC∥DF证出∠3=∠F,从而得到最后结论.【详解】证明:∵AD平分∠BAC(已知),∴∠1=∠2(角平分线的定义),又∵∠ADC+∠EGD=180°(已知),∴EF∥AD(同旁内角互补,两直线平行).∴∠1=∠E(两直线平行,同位角相等),∠2=∠3(两直线平行,同位角相等).∴∠E=∠3(等量代换).又∵AC∥DF(已知),∴∠3=∠F(两直线平行,内错角相等).∴∠E=∠F(等量代换).故答案为:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.20.(1),,;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将△ABC补全为长方形解析:(1),,;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将△ABC补全为长方形,然后利用作差法求解即可.【详解】解:(1)平移后的三个顶点坐标分别为:,,;(2)画出平移后三角形;(3).【点睛】本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去.21.(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可.【详解】解:(1)点.分别表示解析:(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可.【详解】解:(1)点.分别表示1,,,;(2),,,,,,,的整数部分是8,.【点睛】此题考查了估算无理数的大小,正确估算及是解题的关键.二十二、解答题22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB2=1,则AB=1,由勾股定理,AC=;故答案为:.(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4.;即C圆<C正;故答案为:<(3)不能;由已知设长方形长和宽为3xcm和2xcm∴长方形面积为:2x•3x=12解得x=∴长方形长边为3>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数.【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.24.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论;(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数;(3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数.【详解】解:(1)如图1,延长交于点,,,,,,,,故答案为:;(2)如图2,作,,,,,,平分,,,,,,,平分,,,,,设,,比大,,,解得.的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,,,,,,,,,由(2)可知:,,,,,,.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.25.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性质可得∠AFD=∠FDM+∠FMD=90°-∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案为115°,11
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物标志物与药物不良反应预测模型
- 生物墨水的生物安全性评价方法
- 生活质量评估在再程放疗方案选择中的作用
- 电子商务专家认证考试内容解析
- 产品经理面试题及产品思维训练
- 深度解析(2026)《GBT 19496-2004钻芯检测离心高强混凝土抗压强度试验方法》
- 保洁绿化领班工作创新与问题解决方法含答案
- 电子工程师技术支持岗位的常见问题与答案
- 信息录入员岗位面试题及答案
- 环境噪声污染的统计心血管效应与结果防护策略
- 2025年广西继续教育公需科目考试试题和答案
- 俄乌之战课件
- 2026年铁岭卫生职业学院单招职业倾向性考试题库及参考答案详解一套
- 2025年厨房燃气报警器安装合同
- 环孢素的临床应用
- 国开电大《11837行政法与行政诉讼法》期末答题库(机考字纸考)排序版 - 稻壳阅读器2025年12月13日12时58分54秒
- 2025河北廊坊市工会社会工作公开招聘岗位服务人员19名考试笔试备考试题及答案解析
- 2025国家电投集团中国重燃招聘18人笔试历年参考题库附带答案详解
- 框架日常维修协议书
- 智研咨询发布-2025年中国电子变压器件行业市场运行态势及发展趋势预测报告
- 创伤后成长(PTG)视角下叙事护理技术的临床应用
评论
0/150
提交评论