2026届济宁市高一上数学期末教学质量检测模拟试题含解析_第1页
2026届济宁市高一上数学期末教学质量检测模拟试题含解析_第2页
2026届济宁市高一上数学期末教学质量检测模拟试题含解析_第3页
2026届济宁市高一上数学期末教学质量检测模拟试题含解析_第4页
2026届济宁市高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届济宁市高一上数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,集合,则等于()A(1,2) B.(1,2]C.[1,2) D.[1,2]2.已知,,则的大小关系是A. B.C. D.3.设f(x)为偶函数,且在区间(-∞,0)上是增函数,,则xf(x)<0解集为()A.(-1,0)∪(2,+∞) B.(-∞,-2)∪(0,2)C.(-2,0)∪(2,+∞) D.(-2,0)∪(0,2)4.已知幂函数的图象过点(2,),则的值为()A B.C. D.5.函数且的图象恒过定点()A.(-2,0) B.(-1,0)C.(0,-1) D.(-1,-2)6.若a>0,且a≠1,x∈R,y∈R,且xy>0,则下列各式不恒成立的是()①logax2=2logax;②logax2=2loga|x|;③loga(xy)=logax+logay;④loga(xy)=loga|x|+loga|y|.A.②④ B.①③C.①④ D.②③7.一正方体的六个面上用记号笔分别标记了一个字,已知其表面展开图如图所示,则在原正方体中,互为对面的是()A.西与楼,梦与游,红与记B.西与红,楼与游,梦与记C.西与楼,梦与记,红与游D.西与红,楼与记,梦与游8.已知,,且,,则的值是A. B.C. D.9.若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定10.设函数与的图象的交点为,,则所在的区间是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知锐角三角形的边长分别为1,3,,则的取值范围是__________12.若函数满足,且当时,则______13.两条平行直线与的距离是__________14.不等式tanx+15.已知直线平行,则实数的值为____________16.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求不等式的解集;(2)函数,若存在,使得成立,求实数的取值范围;(3)若函数,讨论函数的零点个数.18.计算下列各式:(1)(2)19.设,且.(1)求a的值及的定义域;(2)求在区间上的值域.20.已知函数,,当时,恒有(1)求的表达式及定义域;(2)若方程有解,求实数的取值范围;(3)若方程的解集为,求实数的取值范围21.已知函数(1)求的值;(2)若对任意的,都有求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由指数函数、对数函数的性质可得、,再由交集的运算即可得解.【详解】因为,,所以.故选:B.【点睛】本题考查了指数不等式的求解及对数函数性质的应用,考查了集合交集的运算,属于基础题.2、D【解析】因为,故,同理,但,故,又,故即,综上,选D点睛:对于对数,如果或,那么;如果或,那么3、C【解析】结合函数的性质,得到,画出函数的图象,结合图象,即可求解.【详解】根据题意,偶函数f(x)在(-∞,0)上为增函数,又,则函数f(x)在(0,+∞)上为减函数,且,函数f(x)的草图如图,又由,可得或,由图可得-2<x<0或x>2,即不等式的解集为(-2,0)∪(2,+∞).故选:C.本题主要考查了函数的奇偶性与单调性的应用,其中解答中熟记函数的奇偶性与单调性,结合函数的图象求解是解答的关键,着重考查推理与运算能力.4、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题5、A【解析】根据指数函数的图象恒过定点,即求得的图象所过的定点,得到答案【详解】由题意,函数且,令,解得,,的图象过定点故选:A6、B【解析】对于①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②④根据运算性质可得均正确.【详解】∵xy>0,∴①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②logax2=2loga|x|,④loga(xy)=loga|x|+loga|y|,根据对数运算性质得两个都正确;故选:B.7、B【解析】将该正方体折叠,即可判断对立面的字.【详解】以红为底,折叠正方体后,即可判断出:西与红,楼与游,梦与记互为对面.故选:B【点睛】本题考查了空间正方体的结构特征,展开图与正方体关系,属于基础题.8、B【解析】由,得,所以,,得,,所以,从而有,.故选:B9、A【解析】已知式平方后可判断为正判断的正负,从而判断三角形形状【详解】解:∵,∴,∵是三角形的一个内角,则,∴,∴为钝角,∴这个三角形为钝角三角形.故选:A10、A【解析】设,则,有零点的判断定理可得函数的零点在区间内,即所在的区间是.选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由三角形中三边关系及余弦定理可得应满足,解得,∴实数的取值范围是答案:点睛:根据三角形的形状判断边满足的条件时,需要综合考虑边的限制条件,在本题中要注意锐角三角形这一条件的运用,必须要考虑到三个内角的余弦值都要大于零,并由此得到不等式,进一步得到边所要满足的范围12、1009【解析】推导出,当时,从而当时,,,由此能求出的值【详解】∵函数满足,∴,∵当时,∴当时,,,∴故答案为1009【点睛】本题主要考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题13、【解析】直线与平行,,得,直线,化为,两平行线距离为,故答案为.14、kπ,π4【解析】根据正切函数性质求解、【详解】由正切函数性质,由tanx+π4≥1得所以kπ≤x<kπ+π4,故答案为:[kπ,kπ+π415、【解析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=x+,y=+,∵两条直线平行,∴,≠,解得m=﹣7综上可得:m=﹣7故答案为﹣7【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题16、【解析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【详解】联立,解得∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2),∵直线4x-3y-7=0的斜率为,∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=(x-3)即为4x-3y-6=0故答案为4x-3y-6=0【点睛】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)答案见解析【解析】(1)根据题意条件,分别求解的定义域和解对数不等式即可完成求解;(2)通过题意条件,找到和两函数值域的关系,分别求解出对应的值域,通过分类讨论即可完成求解;(3)通过题意条件,通过讨论的值,分别作出对应的函数图像,借助换元,观察函数图像的交点状况,从而完成求解.【小问1详解】函数,由,可得,即的定义域为;不等式,所以,即为,解得,则原不等式的解为;【小问2详解】函数,若存在,使得成立,则和在上的值域的交集不为空集;由(1)可知:时,显然单调递减,所以其值域为;若,则在上单调递减,所以的值域为,此时只需,即,所以;若,则在递增,可得的值域为,此时与的交集显然为空集,不满足题意;综上,实数的范围是;小问3详解】由,得,令,则,画出的图象,当,只有一个,对应3个零点,当时,,此时,由,得在,三个分别对应一个零点,共3个,在时,,三个分别对应1个,1个,3个零点,共5个,综上所述:当时,只有1个零点,当或时,有3个零点,当时,有5个零点.【点睛】方法点睛:对于“存在,使得成立”,需要将其转化成两函数值域的关系,即两个函数的值域有交集,需根据函数的具体范围进行适时的分类讨论即可.18、(1);(2).【解析】(1)运用指数幂运算性质进行计算即可;(2)运用对数的运算公式,结合换底公式进行求解即可.【小问1详解】原式;【小问2详解】原式.19、(1),;(2)【解析】(1)由代入计算可得的值,根据对数的真数大于零,求出函数的定义域;(2)由(1)可知,设,则,由的取值范围求出的范围,即可求出的值域;【详解】解:(1)∵,∴,∴,则由,解得,即,所以的定义域为(2),设,则,,当时,,而,,∴,,所以在区间上的值域为【点睛】本题考查待定系数法求函数解析式,对数型复合函数的值域,属于中档题.20、(1),;(2);(3)【解析】(1)由已知中函数,,当时,恒有,我们可以构造一个关于方程组,解方程组求出的值,进而得到的表达式;(2)转化为,解得,可求出满足条件的实数的取值范围.(3)根据对数的运算性质,转化为一个关于的分式方程组,进而根据方程的解集为,则方程组至少一个方程无解或两个方程的解集的交集为空集,分类讨论后,即可得到答案.【详解】(1)∵当时,,即,即,整理得恒成立,∴,又,即,从而∴,∵,∴,或,∴的定义域为(2)方程有解,即,∴,∴,∴,∴,或,解得或,∴实数的取值范围(3)方程的解集为,∴,∴,∴,方程的解集为,故有两种情况:①方程无解,即,得,②方程有解,两根均在内,,则解得综合①②得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论