2026届山东省济宁市任城区高一上数学期末复习检测试题含解析_第1页
2026届山东省济宁市任城区高一上数学期末复习检测试题含解析_第2页
2026届山东省济宁市任城区高一上数学期末复习检测试题含解析_第3页
2026届山东省济宁市任城区高一上数学期末复习检测试题含解析_第4页
2026届山东省济宁市任城区高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省济宁市任城区高一上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.2.设集合,则A. B.C. D.3.幂函数y=xa,当a取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xa,y=xb的图象三等分,即有BM=MN=NA,那么=()A.0 B.1C. D.24.给出下列四种说法:①若平面,直线,则;②若直线,直线,直线,则;③若平面,直线,则;④若直线,,则.其中正确说法的个数为()A.个 B.个C.个 D.个5.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为()A. B.C. D.6.设则下列说法正确的是()A.方程无解 B.C.奇函数 D.7.设,则a,b,c的大小关系是A. B.C. D.8.函数的零点个数是A.0 B.1C.2 D.39.已知角的终边经过点,则的值为()A.11 B.10C.12 D.1310.已知函数在区间上单调递增,若成立,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线与互相垂直,则点到轴的距离为__________12.已知函数(,)的部分图象如图所示,则的值为13.命题“”的否定是___________.14.如图所示,某农科院有一块直角梯形试验田,其中.某研究小组计则在该试验田中截取一块矩形区域试种新品种的西红柿,点E在边上,则该矩形区域的面积最大值为___________.15.已知,则_____.16.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知a、b>0且都不为1,函数f(1)若a=2,b=12,解关于x的方程(2)若b=2a,是否存在实数t,使得函数gx=tx+log2f18.(1)当,求的值;(2)设,求的值.19.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围20.体育课上,小明进行一项趣味测试,在操场上从甲位置出发沿着同一跑道走到乙位置,有两种不同的行走方式(以下).方式一:小明一半的时间以的速度行走,刹余一半时间换为以的速度行走,平均速度为;方式二:小明一半的路程以的速度行走,剩余一半路程换为以的速度行走,平均速度为;(1)试求两种行走方式的平均速度;(2)比较的大小.21.果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.149161(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【点睛】三角函数求最值或者求值域一定要先将函数化成的形函数.2、B【解析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.3、A【解析】由题意得,代入函数解析式,进而利用指对互化即可得解.【详解】BM=MN=NA,点A(1,0),B(0,1),所以,将两点坐标分别代入y=xa,y=xb,得所以,所以.故选:A.【点睛】本题主要考查了幂函数的图像及对数的运算,涉及换底公式,属于基础题.4、D【解析】根据线面关系举反例否定命题,根据面面平行定义证命题正确性.【详解】若平面,直线,则可异面;若直线,直线,直线,则可相交,此时平行两平面交线;若直线,,则可相交,此时平行两平面交线;若平面,直线,则无交点,即;选D.【点睛】本题考查线面平行关系,考查空间想象能力以及简单推理能力.5、B【解析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,所以右图的图象所对应的解析式为.故选:B6、B【解析】根据函数的定义逐个分析判断【详解】对于A,当为有理数时,由,得,所以A错误,对于B,因为为无理数,所以,所以B正确,对于C,当为有理数时,也为有理数,所以,当为无理数时,也为无理数,所以,所以为偶函数,所以C错误,对于D,因为,所以,所以D错误,故选:B7、D【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【详解】,因此可得.故选:D【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.8、C【解析】将原问题转化为函数交点个数的问题即可确定函数的零点个数.【详解】函数的零点个数即函数与函数交点的个数,绘制函数图象如图所示,观察可得交点个数为2,则函数的零点个数是2.本题选择C选项.【点睛】本题主要考查函数零点的定义,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.9、B【解析】由角的终边经过点,根据三角函数定义,求出,带入即可求解.【详解】∵角的终边经过点,∴,∴.故选:B【点睛】利用定义法求三角函数值要注意:(1)三角函数值的大小与点P(x,y)在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2)当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论10、A【解析】由增函数的性质及定义域得对数不等式组,再对数函数性质可求解【详解】不等式即为,∵函数在区间上单调递增,∴,即,解得,∴实数的取值范围是,选A【点睛】本题考查函数的单调性应用,考查解函数不等式,解题时除用函数的单调性得出不等关系外,一定要注意函数的定义域的约束,否则易出错二、填空题:本大题共6小题,每小题5分,共30分。11、或.【解析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.12、【解析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;13、,.【解析】根据特称命题的否定的性质进行求解即可.【详解】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可,命题“,”的否定是“,”,故答案为:,.14、【解析】设,求得矩形面积的表达式,结合基本不等式求得最大值.【详解】设,,,,所以矩形的面积,当且仅当时等号成立.故选:15、3【解析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【详解】因,所以.故答案为:3.16、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x=-(2)存,t=-1【解析】(1)根据题意可得2x(2)由题意可得gx=tx+log21+2【小问1详解】因为a=2,b=12,所以方程fx=fx+1化简得2x=2-x-1,所以【小问2详解】因为b=2a,故fxgx因为gx是偶函数,故g-x=g而g-x于是tx=-t+1x对任意的实数x18、(1);(2)【解析】(1)利用商数关系,化弦为切,即可得到结果;(2)利用诱导公式化简,代入即可得到结果.【详解】(1)因为,且,所以,原式=(2)∵,【点睛】本题考查三角函数的恒等变换,涉及到正余弦的齐次式(弦化切),诱导公式,属于中档题.19、(1)(2)【解析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时,,所以,即函数的图象过对称中心(i)当,即时,函数在上单调递增,由对称性知,在上单调递增,从而在上单调递增,由对称性得,则要使,只需,解得,所以,(ii)当,即时,函数在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减所以函数在上单调递减,在上单调递增,在上单调递减,,其中,要使,只需,解得,(iii)当,即时,函数在上单调递减,由对称性知,在上单调递减,从而在上单调递减.此时要使,只需,解得,综上可知,实数的取值范围是20、(1),(2)【解析】(1)直接利用平均速度的定义求出;(2)利用作差法比较大小.【小问1详解】设方式一中小明行走的总路程为s,所用时间为,由题意得,可知设方式二中所用时间为,总路程为s,则【小问2详解】.因为且,所以,即.21、(1)更适合作为与的函数模型(2)果树数量为时年利润最大【解析】(1)将点代入和,求出两个函数,然后将和代入,看哪个算出的数据接近实际数据哪个就更适合作为与的函数模型.(2)根据(1)可得,利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论