版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届金昌市重点中学数学高一上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”的一个充分不必要条件是()A. B.C. D.2.将函数图象上的点向右平移个单位长度后得到点,若点仍在函数的图象上,则的最小值为()A. B.C. D.3.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数,则函数图象的对称中心为()A. B.C. D.4.中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,其高为3,底面,底面扇环所对的圆心角为,弧AD长度为弧BC长度的3倍,且,则该曲池的体积为()A B.C. D.5.已知函数,记,,,则,,的大小关系为()A. B.C. D.6.已知,且,则()A. B.C. D.7.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为()A. B.-C.2 D.8.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限9.幂函数的图象经过点,则()A.是偶函数,且在上单调递增B.是偶函数,且在上单调递减C.是奇函数,且在上单调递减D.既不是奇函数,也不是偶函数,在上单调递增10.已知角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点,则______.12.函数的最小值为______13.写出一个周期为且值域为的函数解析式:_________14.已知函数(且)的图象过定点,则点的坐标为______15.已知函数,(1)______(2)若方程有4个实数根,则实数的取值范围是______16.设函数=,则=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,,是以为斜边的等腰直角三角形,且.(1)证明:平面平面.(2)若四棱锥的体积为4,求四面体的表面积.18.已知实数,且满足不等式.(1)解不等式;(2)若函数在区间上有最小值,求实数的值.19.已知,且是第四象限角.(1)求和的值;(2)求的值;20.在平面直角坐标系中,已知角的页点为原点,始边为轴的非负半轴,终边经过点.(1)求的值;(2)求旳值.21.设函数,(1)求函数的值域;(2)设函数,若对,,,求正实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用充分条件,必要条件的定义判断即得.【详解】由,可得,所以是的充要条件;所以是既不充分也不必要条件;所以是的必要不充分条件;所以是的充分不必要条件.故选:D.2、B【解析】作出函数和直线图象,根据图象,利用数形结合方法可以得到的最小值.【详解】画出函数和直线的图象如图所示,是它们的三个相邻的交点.由图可知,当在点,在点时,的值最小,易知的横坐标分别为,所以的最小值为,故选:B.3、A【解析】根据题意并结合奇函数的性质即可求解.【详解】由题意得,设函数图象的对称中心为,则函数为奇函数,即,则,解得,故函数图象的对称中心为.故选:.4、B【解析】利用柱体体积公式求体积.【详解】不妨设弧AD所在圆的半径为R,弧BC所在圆的半径为r,由弧AD长度为弧BC长度的3倍可知,,即.故该曲池的体积.故选:B5、C【解析】根据题意得在上单调递增,,进而根据函数的单调性比较大小即可.【详解】解:因为函数定义域为,,故函数为奇函数,因为在上单调递增,在上单调递减,所以在上单调递增,因为,所以,所以,故选:C.6、B【解析】利用角的关系,再结合诱导公式和同角三角函数基本关系式,即可求解.【详解】,,.故选:B7、A【解析】如图所示,分别取,,,的中点,,,,则,,,或其补角为异面直线与所成角【详解】解:如图所示,分别取,,,的中点,,,,则,,,或其补角为异面直线与所成角设,则,,,异面直线与所成角的余弦值为,故选:A【点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角8、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B9、D【解析】设幂函数方程,将点坐标代入,可求得的值,根据幂函数的性质,即可求得答案.【详解】设幂函数的解析式为:,将代入解析式得:,解得,所以幂函数,所以既不是奇函数,也不是偶函数,且,所以在上单调递增.故选:D.10、D【解析】根据任意角的三角函数的定义即可求出的值,根据二倍角的正弦公式,即可求出的值【详解】由题意,角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,所以,,所以故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】结合幂函数定义,采用待定系数法可求得解析式,代入可得结果.【详解】为幂函数,可设,,解得:,,.故答案为:.【点睛】本题考查幂函数解析式和函数值的求解问题,关键是能够明确幂函数的定义,采用待定系数法求解函数解析式,属于基础题.12、【解析】根据,并结合基本不等式“1”的用法求解即可.【详解】解:因为,所以,当且仅当时,等号成立故函数的最小值为.故答案为:13、【解析】根据函数的周期性和值域,在三角函数中确定一个解析式即可【详解】解:函数的周期为,值域为,,则的值域为,,故答案为:14、【解析】令,结合对数的运算即可得出结果.【详解】令,得,又因此,定点的坐标为故答案为:15、①-2②.【解析】先计算出f(1),再根据给定的分段函数即可计算得解;令f(x)=t,结合二次函数f(x)性质,的图象,利用数形结合思想即可求解作答.【详解】(1)依题意,,则,所以;(2)函数的值域是,令,则方程在有两个不等实根,方程化为,因此,方程有4个实数根,等价于方程在有两个不等实根,即函数的图象与直线有两个不同的公共点,在同一坐标系内作出函数的图象与直线,而,如图,观察图象得,当时,函数与直线有两个不同公共点,所以实数的取值范围是.故答案为:-2;16、【解析】由题意得,∴答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)9【解析】(1)由已知可得,根据线面垂直的判定得平面,进而可得平面,由面面垂直的判定可得证.(2)根据四棱锥的体积可得.过作于,连接,可证得平面,.可求得,可求得四面体的表面积.【详解】(1)证明:∵是以为斜边的等腰直角三角形,∴,又,∴平面,则.又,∴平面.又平面,∴平面平面.(2)解:∵,且,∴.∴.过作于,连接,∵.∴平面,则.∵.∴.∴.故四面体的表面积为.【点睛】本题考查面面垂直的证明,四棱锥的体积和表面积的计算,关键在于熟记各线面平行、垂直,面面平行、垂直的判定定理,严格地满足所需的条件,属于中档题.18、(1)(2)【解析】分析:(1)由题意结合指数函数的单调性可得,结合函数的单调性和函数的定义域可得不等式的解集为.(2),令,结合反比例函数性质和对数函数的性质可得.详解:(1)由题意得:,∴,∴,解得.(2),令,当时,,,所以,所以.∵,∴的对数函数在定义域内递减,∴,∴.点睛:本题主要考查指数函数的性质,对数函数的性质,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.19、(1),;(2).【解析】(1)根据象限和公式求出的正弦,再用倍角公式计算即可(2)求出角正切值,再展开,代入计算即可.【详解】解:(1),由得,,又是第四象限角,,,,.(2)由(1)可知,,.20、(1)(2)【解析】(1)根据三角函数的定义可求得的值,再利用诱导公式结合同角的三角函数关系化简可得结果;(2)利用二倍角的余弦公式可直接求得答案.【小问1详解】由角的终边经过点,可得,,故;小问2详解】.21、(1);(2).【解析】(1)由题可得,利用基本不等式可求函数的值域;(2)由题可求函数在上的值域,由题可知函数在上的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华北理工大学附属医院2025年公开招聘护理人员备考题库及一套参考答案详解
- 2026年天津市河北区卫生健康系统招聘事业单位85人笔试备考重点题库及答案解析
- 2025年云南省有色地质局三一〇队下属企业招聘备考题库有答案详解
- 2025年西北工业大学民航学院损伤容限课题组招聘备考题库参考答案详解
- 通辽市扎鲁特旗事业单位2026年第一批次人才引进39人备考题库及参考答案详解一套
- 2025年分子细胞卓越中心孟飞龙组招聘实验室技术员备考题库及参考答案详解1套
- 2025年乌海市事业单位第一批人才引进127人备考题库及完整答案详解1套
- 2025年北京大学药学院天然药物及仿生药物全国重点实验室大型仪器技术平台专业技术人员招聘备考题库及1套完整答案详解
- 2025年杭州师范大学附属医院公开招聘高层次、紧缺专业人才36人备考题库及参考答案详解一套
- 2025陕西建设机械股份有限公司本部营销中心中层管理人员竞聘6人备考考试题库及答案解析
- 血透失衡综合征的护理课件
- 2025年服饰时尚行业数字化转型研究报告
- 物流搬运工合同范本
- 2025年心肺复苏指南课件
- 2025年湖北省宜昌市新质生产力发展研判:聚焦“3+2”主导产业打造长江经济带新质生产力发展示范区图
- 2025 小学二年级数学上册解决问题审题方法课件
- 老年患者术后加速康复外科(ERAS)实施方案
- 2024-2025学年广州市越秀区八年级上学期期末历史试卷(含答案)
- 2025年餐饮与管理考试题及答案
- 2025事业单位考试公共基础知识测试题及答案
- M蛋白血症的护理
评论
0/150
提交评论