2026届湖北省黄冈市浠水县洗马高级中学数学高二上期末考试试题含解析_第1页
2026届湖北省黄冈市浠水县洗马高级中学数学高二上期末考试试题含解析_第2页
2026届湖北省黄冈市浠水县洗马高级中学数学高二上期末考试试题含解析_第3页
2026届湖北省黄冈市浠水县洗马高级中学数学高二上期末考试试题含解析_第4页
2026届湖北省黄冈市浠水县洗马高级中学数学高二上期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北省黄冈市浠水县洗马高级中学数学高二上期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四面体中,为的中点,为棱上的点,且,则()A. B.C. D.2.如图,在平行六面体中,AC与BD的交点为M,设,,,则下列向量中与相等的向量是()A. B.C. D.3.以原点为对称中心的椭圆焦点分别在轴,轴,离心率分别为,直线交所得的弦中点分别为,,若,,则直线的斜率为()A. B.C. D.4.设是区间上的连续函数,且在内可导,则下列结论中正确的是()A.的极值点一定是最值点B.的最值点一定是极值点C.在区间上可能没有极值点D.在区间上可能没有最值点5.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为6.等轴双曲线渐近线是()A. B.C. D.7.若等差数列,其前n项和为,,,则()A.10 B.12C.14 D.168.若是真命题,是假命题,则A.是真命题 B.是假命题C.是真命题 D.是真命题9.已知三棱柱中,,,D点是线段上靠近A的一个三等分点,则()A. B.C. D.10.若倾斜角为的直线过两点,则实数()A. B.C. D.11.已知数列是等比数列,数列是等差数列,若,则()A. B.C. D.12.在区间上随机取一个数,则事件“曲线表示圆”的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,,当时,不等式恒成立,则实数a的取值范围为_______14.对于实数表示不超过的最大整数,如.已知数列的通项公式,前项和为,则___________.15.已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率____________.16.若满足约束条件,则的最大值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱锥中,为等边三角形,且面面,(1)求证:;(2)当与平面BCD所成角为45°时,求二面角的余弦值18.(12分)在中,内角,,的对边分别为,,.若,且.(1)求角的大小;(2)若的面积为,求的最大值.19.(12分)已知的三个顶点是,,(1)求边所在的直线方程;(2)求经过边的中点,且与边平行的直线的方程20.(12分)已知数列中,,.(1)求证:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.21.(12分)设数列的首项,(1)证明:数列是等比数列;(2)设且前项和为,求22.(10分)已知数列{an}满足*(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用空间向量加法运算,减法运算,数乘运算即可得到答案.【详解】如图故选:A2、B【解析】根据向量加法和减法法则即可用、、表示出.【详解】故选:B.3、A【解析】分类讨论直线的斜率存在与不存在两种情况,联立直线与曲线方程,再根据,求解.【详解】设椭圆的方程分别为,,由可知,直线的斜率一定存在,故设直线的方程为.联立得,故,;联立得,则,.因为,所以,所以.又,所以,所以,所以,.故选:A.【点睛】此题利用设而不求的方法,找出、、、之间的关系,化简即可得到的值.此题的难点在于计算量较大,且容易计算出错.4、C【解析】根据连续函数的极值和最值的关系即可判断【详解】根据函数的极值与最值的概念知,的极值点不一定是最值点,的最值点不一定是极值点.可能是区间的端点,连续可导函数在闭区间上一定有最值,所以选项A,B,D都不正确,若函数在区间上单调,则函数在区间上没有极值点,所以C正确故选:C.【点睛】本题主要考查函数的极值与最值的概念辨析,属于容易题5、A【解析】把化成抛物线标准方程,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】,即.则,即故此抛物线开口向上,焦点为故选:A6、A【解析】对等轴双曲线的焦点的位置进行分类讨论,可得出等轴双曲线的渐近线方程.【详解】因为,若双曲线的焦点在轴上,则等轴双曲线的渐近线方程为;若双曲线的焦点在轴上,则等轴双曲线的渐近线方程为.综上所述,等轴双曲线的渐近线方程为.故选:A.7、B【解析】由等差数列前项和的性质计算即可.【详解】由等差数列前项和的性质可得成等差数列,,即,得.故选:B.8、D【解析】因为是真命题,是假命题,所以是假命题,选项A错误,是真命题,选项B错误,是假命题,选项C错误,是真命题,选项D正确,故选D.考点:真值表的应用.9、A【解析】在三棱柱中,,转化为结合已知条件计算即可.【详解】在三棱柱中,满足,且,则,,D点是线段上靠近A的一个三等分点,则,由向量的减法运算得,.故选:A【点睛】关键点点睛:在三棱柱中,,由向量的减法运算得,再展开利用数量积运算.10、A【解析】解方程即得解.【详解】解:由题得.故选:A11、A【解析】结合等差中项和等比中项分别求出和,代值运算化简即可.【详解】由是等比数列可得,是等差数列可得,所以,故选:A12、D【解析】先求出曲线表示圆参数的范围,再由几何概率可得答案.【详解】由可得曲线表示圆,则解得或又所以曲线表示圆的概率为故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造新函数,求导根据导数大于等于零得到,构造,求导得到单调区间,计算函数最小值得到答案.【详解】当时,不等式恒成立,所以,所以在上是增函数,,则上恒成立,即在上恒成立,令,则,当时,,当时,,所以,所以故答案为:14、54【解析】由,利用裂项相消法求得,再由的定义求解.【详解】由已知可得:,,当时,,;当时,,;当时,,;当时,,;当时,;;所以.故答案为:54.15、##【解析】根据线段为边作正,得到M在y轴上,求得M的坐标,再由,得到边的中点坐标,代入双曲线方程求解.【详解】以线段为边作正,则M在y轴上,设,则,因为,所以边的中点坐标为,因为边的中点在双曲线上,所以,因为,所以,即,解得,因为,所以,故答案为:16、7【解析】画出约束条件所表示的平面区域,结合图象和直线在轴上的截距,确定目标函数的最优解,代入即可求解.【详解】画出不等式组所表示的平面区域,如图所示,目标函数可化为,当直线过点点时,此时直线在轴上的截距最大,此时目标函数取得最大值,又由,解得,即,所以目标函数的最大值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据给定条件证得平面即可推理作答.(2)由与平面BCD所成角确定正边长与CD长的关系,再作出二面角的平面角,借助余弦定理计算作答.【小问1详解】在三棱锥中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小问2详解】取BC中点F,连接AF,DF,如图,因为等边三角形,则,而平面平面,平面平面,平面,于是得平面,是与平面BCD所成角,即,令,则,因,即有,由(1)知,,则有,过C作交AD于O,在平面内过O作交BD于E,连CE,从而得是二面角的平面角,中,,,中,由余弦定理得,,,显然E是斜边中点,则,中,由余弦定理得,所以二面角的余弦值.18、(1);(2).【解析】(1)由,等式右边可化为余弦定理形式,根据求角即可(2)由余弦定理结合均值不等式可求出的最大值,即可求出三角面积的最大值.【详解】(1)由得:,即:.∴,又,∴.(2)由,当且仅当等号成立.得:..【点睛】本题主要考查了余弦定理,均值不等式,三角形面积公式,属于中档题.19、(1)(2)【解析】(1)利用直线方程的两点式求解;(2)先求得AB的中点,再根据直线与AC平行,利用点斜式求解.【小问1详解】因为,,所以边所在的直线方程为,即;【小问2详解】因为,,所以AB的中点为:,又,所以直线方程为:,即.20、(1)证明见解析,(2)【解析】(1)由,取倒数得到,再利用等差数列的定义求解;(2)由(1)得到,利用错位相减法求解.【小问1详解】证明:由,以及,显然,所以,即,所以数列是首项为,公差为的等差数列,所以,所以;【小问2详解】由(1)可得,,所以数列的前项和①所以②则由②-①可得:,所以数列的前项和.21、(1)证明见解析;(2).【解析】(1)由已知变形得出,即可证得结论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论