西藏民族大学附属中学2026届数学高一上期末经典模拟试题含解析_第1页
西藏民族大学附属中学2026届数学高一上期末经典模拟试题含解析_第2页
西藏民族大学附属中学2026届数学高一上期末经典模拟试题含解析_第3页
西藏民族大学附属中学2026届数学高一上期末经典模拟试题含解析_第4页
西藏民族大学附属中学2026届数学高一上期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏民族大学附属中学2026届数学高一上期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调递减区间是A. B.C. D.2.已知,,,则、、的大小关系为()A. B.C. D.3.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.4.集合A=,B=,则集合AB=()A. B.C. D.5.函数与的图象可能是()A. B.C. D.6.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.7.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位8.已知函数在区间上有且只有一个零点,则正实数的取值范围是()A. B.C. D.9.关于的一元二次不等式的解集为()A.或 B.C.或 D.10.已知函数,若f(a)=10,则a的值是()A.-3或5 B.3或-3C.-3 D.3或-3或5二、填空题:本大题共6小题,每小题5分,共30分。11.已知命题“∀x∈R,e x≥a”12.若关于x的不等式对一切实数x恒成立,则实数k的取值范围是___________.13.已知函数,若,则实数的取值范围为______.14.函数f(x),若f(a)=4,则a=_____15.已知平面,,直线,若,,则直线与平面的位置关系为______.16.若函数的定义域为[-2,2],则函数的定义域为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,()求及()若的最小值是,求的值18.已知圆:,(1)若过定点的直线与圆相切,求直线的方程;(2)若过定点且倾斜角为30°的直线与圆相交于,两点,求线段的中点的坐标;(3)问是否存在斜率为1的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由.19.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料(Ⅰ)求三位同学都没有中奖的概率;(Ⅱ)求三位同学中至少有两位没有中奖的概率.20.已知向量,,,求:(1),;(2)21.在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:具体过程如下:如图,在平面直角坐标系内作单位圆,以为始边作角.它们的终边与单位圆的交点分别为则,由向量数量积的坐标表示,有设的夹角为,则,另一方面,由图(1)可知,;由图(2)可知,于是所以,也有;所以,对于任意角有:此公式给出了任意角的正弦、余弦值与其差角的余弦值之间的关系,称为差角的余弦公式,简记作.有了公式以后,我们只要知道的值,就可以求得的值了阅读以上材料,利用图(3)单位圆及相关数据(图中是的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题:(1)判断是否正确?(不需要证明)(2)证明:

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】令,则有或,在上的减区间为,故在上的减区间为,选A2、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.3、D【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D4、B【解析】直接根据并集的运算可得结果.【详解】由并集的运算可得.故选:B.5、D【解析】注意到两函数图象与x轴的交点,由排除法可得.【详解】令,得或,则函数过原点,排除A;令,得,故函数,都过点,排除BC.故选:D6、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A7、D【解析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)8、D【解析】将零点个数问题转化为两个函数图象的交点个数问题,通过对参数讨论作图可解.【详解】在区间上有且只有一个零点在区间上有且只有一个解,即在区间上有且只有一个解令,,当,即时,因为在上单调递减,在上单调递增且,,由图1知,此时函数与在上只有一个交点;当,即时,因为,所以要使函数与在上有且只有一个交点,由图2知,即,解得或(舍去).综上,的取值范围为.故选:D9、A【解析】根据一元二次不等式的解法,直接求解,即可得出结果.【详解】由得,解得或.即原不等式的解集为或.故选:A.10、A【解析】根据分段函数的解析式,分两种情况讨论分别求得或.【详解】若,则舍去),若,则,综上可得,或,故选A.【点睛】本题主要考查分段函数的解析式、分段函数求自变量,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.二、填空题:本大题共6小题,每小题5分,共30分。11、a≤0【解析】根据∀x∈R,e x≥a成立,【详解】因为∀x∈R,e所以e 则a≤0,故答案为:a≤012、【解析】根据一元二次不等式与二次函数的关系,可知只需判别式,利用所得不等式求得结果.【详解】不等式对一切实数x恒成立,,解得:故答案为:.13、或【解析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.14、1或8【解析】当时,,当时,,分别计算出的值,然后在检验.【详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【点睛】本题考查分段函数根据函数值求自变量,属于基础题.15、【解析】根据面面平行的性质即可判断.【详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【点睛】本题考查面面平行的性质,属于基础题.16、【解析】∵函数的定义域为[-2,2]∴,∴∴函数的定义域为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用平面向量的数量积公式、模长公式求解;(2)将的值域,转化为关于的一元二次函数的值域,根据【详解】(1),,(2),,,,当时,当且仅当时,取最小值,解得;当时,当且仅当时,取最小值,解得(舍);当时,当且仅当时,取最小值,解得(舍去),综上所述,.【点睛】本题主要考查求平面向量的数量积,向量的模,以及由函数的最值求参数的问题,熟记平面向量数量积的坐标表示,向量模的坐标表示,以及三角函数的性质即可,属于常考题型.18、(1)或(2)(3)存在,或【解析】(1)首先设直线的方程为:,与圆的方程联立,令,即可求解的值;(2)设直线的方程为:,与圆的方程联立,利用韦达定理表示中点坐标;(3)方法一,设直线:,与圆的方程联立,利用韦达定理表示,即可求解;方法二,设圆系方程,利用圆心在直线,以及圆经过原点,即可求解参数.【小问1详解】根据题意,设直线的方程为:联立直线与圆的方程并整理得:所以,,从而,直线的方程为:或;【小问2详解】根据题意,设直线的方程为:代入圆方程得:,显然,设,,则,所以点的坐标为【小问3详解】假设存在这样的直线:联立圆的方程并整理得:当设,,则,所以因为以为直径的圆经过原点,所以,,∴,即均满足.∴,所以直线的方程为:或.(3)法二:可以设圆系方程则圆心坐标,圆心在直线上,得①且该圆过原点,得②由①②,求得或所以直线的方程为:或.19、(1);(2).【解析】(1)因为甲、乙、丙三位同学是否中奖是相互独立,因此可用相互独立事件同时发生的概率求三位同学都没有中奖的概率;(2)将此问题看成是三次独立重复试验,每试验“中奖”发生的概率为.试题解析:解:设甲、乙、丙三位同学中奖分别为事件A、B、C,那么事件A、B、C相互独立,且P(A)=P(B)=P(C)(1)三位同学都没有中奖的概率为:P(··)=P()P()P().(2)三位同学中至少有两位没有中奖的概率为:P=考点:1、相互独立事件同时发生的概率;2、独立重复试验.20、(1),(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论