版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省淮北、宿州市高二上数学期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线在轴上的截距为()A.3 B.C. D.2.设函数,则()A.1 B.5C. D.03.在中,B=30°,BC=2,AB=,则边AC的长等于()A. B.1C. D.24.若且,则下列不等式中一定成立的是()A. B.C. D.5.已知,,,若,,共面,则λ等于()A. B.3C. D.96.过点且平行于直线的直线的方程为()A. B.C. D.7.已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为()A.=1 B.=1C.=1 D.=18.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A192
里 B.96
里C.48
里 D.24
里9.已知点,点关于原点的对称点为,则()A. B.C. D.10.下列椭圆中,焦点坐标是的是()A. B.C. D.11.已知抛物线,过点与抛物线C有且只有一个交点的直线有()条A.0 B.1C.2 D.312.在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了48次,那么出现正面朝上的频率和概率分别为()A.0.48,0.48 B.0.5,0.5C.0.48,0.5 D.0.5,0.48二、填空题:本题共4小题,每小题5分,共20分。13.方程表示双曲线,则实数k的取值范围是___________.14.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是______.15.数据6,8,9,10,7的方差为______16.已知实数x,y满足方程,则的最大值为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)证明:数列的前项和.18.(12分)已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴的正半轴上,是否存在某个确定的点M,过该点的动直线与抛物线C交于A,B两点,使得为定值.如果存在,求出点M的坐标;如果不存在,请说明理由.19.(12分)p:函数在区间是递增的;q:方程有实数解.(1)若p为真命题,求m的取值范围;(2)若“”为真,“”为假,求m的取值范围.20.(12分)已知抛物线C:焦点F的横坐标等于椭圆的离心率.(1)求抛物线C的方程;(2)过(1,0)作直线l交抛物线C于A,B两点,判断原点与以线段AB为直径的圆的位置关系,并说明理由.21.(12分)已知椭圆的离心率为,点在椭圆上,直线与交于,两点(1)求椭圆的方程及焦点坐标;(2)若线段的垂直平分线经过点,求的取值范围22.(10分)已知数列的前项和为,且(1)求数列的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为3.故选:A2、B【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以原式等于.故选:B.3、B【解析】利用余弦定理即得【详解】由余弦定理,得,解得AC=1故选:B.4、D【解析】根据不等式的性质即可判断.【详解】对于A,若,则不等式不成立;对于B,若,则不等式不成立;对于C,若均为负值,则不等式不成立;对于D,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.5、C【解析】由,,共面,设,列方程组能求出λ的值【详解】∵,,共面,∴设(实数m、n),即,∴,解得故选:C6、B【解析】根据平行设直线方程,代入点计算得到答案.【详解】设直线方程为,将点代入直线方程得到,解得.故直线方程为:.故选:B.7、D【解析】根据双曲线的性质求解即可.【详解】双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,可得a=4,b=5,所以双曲线方程为:=1.故选:D.8、B【解析】由题可得此人每天走的步数等比数列,根据求和公式求出首项可得.【详解】由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得,解得,第此人第二天走里.故选:B9、C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C10、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B11、D【解析】设出过点与抛物线C只有一个公共点且斜率存在的直线方程,再与的方程联立借助判别式计算、判断作答.【详解】抛物线的对称轴为y轴,直线过点P且与y轴平行,它与抛物线C只有一个公共点,设过点与抛物线C只有一个公共点且斜率存在的直线方程为:,由消去y并整理得:,则,解得或,因此,过点与抛物线C相切的直线有两条,相交且只有一个公共点的直线有一条,所以过点与抛物线C有且只有一个交点的直线有3条.故选:D12、C【解析】频率跟实验次数有关,概率是一种现象的固有属性,与实验次数无关,即可得到答案.【详解】频率跟实验次数有关,出现正面朝上的频率为实验中出现正面朝上的次数除以总试验次数,故为.概率是抛硬币试验的固有属性,与实验次数无关,抛硬币正面朝上的概率为.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题可得,即求.【详解】∵方程表示双曲线,∴,∴.故答案为:.14、【解析】化简椭圆的方程为标准形式,列出不等式,即可求解.【详解】由题意,方程可化为,因为方程表示焦点在轴上的椭圆,可得,解得,实数的取值范围是.故答案为:.15、2【解析】首先求出数据的平均值,再应用方差公式求它们的方差.【详解】由题设,平均值为,∴方差.故答案为:2.16、##【解析】设,根据直线与圆的位置关系即可求出【详解】由于,设,所以点既在直线上,又在圆上,即直线与圆有交点,所以,,即故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析.【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得,即可证得原不等式成立.【小问1详解】解:设等差数列的公差为,则,解得,因此,.【小问2详解】证明:,因此,.故原不等式得证.18、(1);(2).【解析】(1)直线与抛物线相切,所以有,可解得,得抛物线方程.(2)联立直线与抛物线有,把目标式坐标化可得与无关,可得.试题解析:(1)联立方程有,,有,由于直线与抛物线相切,得,所以.(2)假设存在满足条件的点,直线,有,,设,有,,,,当时,为定值,所以.19、(1)(2)或【解析】(1)依题意在区间上恒成立,参变分离可得在区间上恒成立,再利用基本不等式计算可得;(2)首先求出命题为真时参数的取值范围,再根据“”为真,“”为假,即可得到真假,或假真,从而得到不等式组,解得即可;【小问1详解】解:为真命题,即函数在区间上是递增的∴在区间上恒成立,∴在区间上恒成立,∵,当且仅当时等号成立,∴的取值范围为.【小问2详解】解:为真命题,即方程有实数解∴即∴或∵“”为真,“”为假∴真假,或假真∴或,解得或,∴的取值范围为或;20、(1);(2)原点在以线段AB为直径的圆上,详见解析.【解析】(1)利用椭圆方程可得其离心率,进而可求抛物线的焦点,即求;(2)设直线l的方程为,联立抛物线方程,利用韦达定理法可得,即得.【小问1详解】由椭圆,可得,故,∴抛物线C的方程为.【小问2详解】由题可设直线l的方程为,由,得,设,则,又,故,∴,∴,即,故原点在以线段AB为直径的圆上.21、(1),(2)【解析】(1)由题意,列出关于a,b,c的方程组求解即可得答案;(2)设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),则,作差可得①,又线段MN的垂直平分线过点A(0,1),则②,联立直线MN与椭圆的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式联立即可求解【小问1详解】解:由题意可得,解得,所以椭圆C的方程为,焦点坐标为【小问2详解】解:设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),因为,所以,即,所以①,因为线段MN的垂直平分线过点A(0,1),所以,即②,联立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年气候类型判断中的电商直播碳优化
- 基于大数据的药物疗效评估
- 2025年中国眼科医疗行业市场研究报告 硕远咨询
- 2026 年中职掘进技术(隧道开挖)试题及答案
- 维修电工试题及答案
- 基于AIGC算法的数字人技术在电影中的应用研究
- 城市轨道交通给排水系统及检修课件 第1讲 给排水系统概述
- 朝鲜高考中文试卷及答案
- 茶艺师理论测试题及答案
- 美术批发合同范本
- 统编人教版二年级道德与法治上册《第15课 红红火火中国年》第1课时公开课教学课件
- 贵州省黔西南州金成实验学校2024-2025学年九年级上学期期末检测物理试题(无答案)
- 2025年Python二级考试实战模拟试题卷 精讲精练版
- 营配调业务知识培训课件
- 墨盒培训知识课件
- 屠宰场安全生产知识培训课件
- 奥地利介绍模板
- 数据清洗规范
- 石油管道巡护安全培训课件
- T/ZSSP 0005-2022方便食品(速食汤、羹)
- 2025年中国特价式洗车机数据监测报告
评论
0/150
提交评论