初中苏教七年级下册期末数学重点初中试卷A卷及解析_第1页
初中苏教七年级下册期末数学重点初中试卷A卷及解析_第2页
初中苏教七年级下册期末数学重点初中试卷A卷及解析_第3页
初中苏教七年级下册期末数学重点初中试卷A卷及解析_第4页
初中苏教七年级下册期末数学重点初中试卷A卷及解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中苏教七年级下册期末数学重点初中试卷A卷及解析一、选择题1.下列各式正确的是()A. B.C. D.2.如图,在所标识的角中,下列说法不正确的是()A.和互为补角 B.和是同位角C.和是内错角 D.和是对顶角3.若方程组的解满足,则的值为()A. B.﹣1 C. D.14.下列说法一定正确的是()A.若,则 B.若,则C.若,则 D.若,则5.不等式组的解集是,那么m的取值范围()A. B. C. D.6.在下面的几个命题中,①两点确定一条直线是定义;②同旁内角互补;③若正多形的边数越多,则它每个内角的度数越大;④过边形的一个顶点,可以引条对角线;⑤若两个数相除结果为正,则这两个数的符号相同;其中说法正确的是()A.①③ B.②⑤ C.③⑤ D.①②④7.任意大于1的正整数的三次幂均可“分裂”成个连接奇数的和,如:,,,…按此规律,若分裂后,其中一个奇数是2021,则的值是()A.46 B.45 C.44 D.438.如图,已知点,分别在的边,上,将沿折叠,使点落在点的位置,已知,则的度数为()A. B. C. D.二、填空题9.计算:2a(-3b)=_____________.10.命题“全等三角形的对应角相等”的逆命题是_____命题.(填“真”或“假”)11.如图,小亮从点A出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°……照这样走下去,他第一次回到出发地点A时,共走了_____米.12.已知是的一个因式,那么的值为______________.13.已知关于、的方程组和的解相同,则__________.14.如图,OP平分∠AOB,PC⊥OA,点D是OB上的动点,若PC=1cm,则PD的长的最小值为___.15.△ABC两边a=3,b=6,则第三边c的取值范围为_____.16.如图,△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积________.

17.计算:(1);(2);(3).18.因式分解:(1);(2);(3);(4).19.解方程组或不等式(1);(2)-≤1.20.解不等式(1)>(2)三、解答题21.如图,AB∥CD,直线EF交直线AB、CD于点M、N,NP平分∠ENC交直线AB于点P,∠EMB=76°.(1)求∠PNC的度数;(2)若PQ将∠APN分成两部分,且∠APQ:∠QPN=1:3,求∠PQD的度数.22.某治污公司决定购买10台污水处理设备.现有甲、乙两种型号的设备可供选择,其中每台的价格与月处理污水量如下表:甲型乙型价格(万元/台)xy处理污水量(吨/月)300260经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元.(1)求x,y的值;(2)如果治污公司购买污水处理设备的资金不超过91万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案.23.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小语用长,宽的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?(2)小语爸爸的茶叶专卖店以每盒元购进一批茶叶,按进价增加作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了元,售价仍不变,已知在整个买卖过程中共盈利元,求这批茶叶共进了多少盒?24.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、.(1)当点与点、在一直线上时,,,则_____.(2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论.25.已知:直线,点E,F分别在直线AB,CD上,点M为两平行线内部一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足,,设∠EMF=α,求∠H的度数(用含α的代数式表示).【参考答案】一、选择题1.C解析:C【分析】分别根据单项式乘以单项式、积的乘方、幂的乘方、合并同类项的运算法则逐一判断即可.【详解】解:A.,故错误,该项不符合题意;B.,故错误,该项不符合题意;C.,正确,该项符合题意;D.,故错误,该项不符合题意;故选:C.【点睛】本题考查单项式乘以单项式,积的乘方,幂的乘方,合并类同类,掌握单项式乘以单项式、幂的乘方、积的乘方、合并同类项法则是解题的关键.2.C解析:C【分析】根据同位角、内错角、邻补角、对顶角的定义求解判断即可.【详解】解:A、和是邻补角,故此选项不符合题意;B、和是同位角,故此选项不符合题意;C、和不是内错角,故此选项符合题意;D、和是对顶角,故此选项不符合题意.故选:C.【点睛】此题考查了同位角、内错角、对顶角以及邻补角的定义,熟记同位角、内错角、邻补角、对顶角的定义是解题的关键.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.3.A解析:A【分析】根据等式的性质,可得关于k的方程,根据解方程,可得答案.【详解】,①-②得:可得:,因为,所以,解得:,故选A.【点睛】本题考查了二元一次方程组的解,整体代入的出关于k的方程是解题关键.4.B解析:B【分析】根据不等式的性质分析判断即可.【详解】解:A、若,当时,则,不正确,故该选项不符合题意;B、若,则,正确,故该选项符合题意;C、若,当时,则,不正确,故该选项不符合题意;D、若,当时,则,不正确,故该选项不符合题意;故选:B.【点睛】本题考查了不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.也考查了等式的性质.5.A解析:A【分析】先求出不等式的解集,再根据不等式组的解集得出答案即可.【详解】解不等式①,得:∵不等式组的解集是∴故选择:A.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m的不等式是解此题的关键.6.C解析:C【详解】解析:本题考查了真假命题的判定.①假命题;②假命题,可改为“两直线平行,同旁内角互补”;③真命题;④假命题,可以引条对角线;⑤真命题.故选C.7.B解析:B【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2021的是从3开始的第1010个数,然后确定出1007所在的范围即可得解.【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=2021,n=1010,∴奇数2021是从3开始的第1010个奇数,∵,∴第1010个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:B.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.8.C解析:C【分析】由∠A求∠AEF+∠AFE的大小,由折叠得到∠PEF+∠PFE的大小,结合平角计算∠1+∠2.【详解】解:∵∠A=70°,∴∠AEF+∠AFE=180°−70°=110°,由折叠得:∠PEF+∠PFE=∠AEF+∠AFE=110°,∵∠1+∠PEF+∠AEF=180°,∠2+∠PFE+∠AFE=180°,∴∠1+∠2=360°−110°−110°=140°,故选:C.【点睛】本题考查了三角形的内角和、折叠的性质、平角的定义,利用整体思想解题是本题的关键.二、填空题9.-6ab【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式计算可得.【详解】解:2a•(-3b)=-6ab,故答案为:-6ab.【点睛】本题主要考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.10.假【分析】首先分清题设是:两个三角形全等,结论是:对应角相等,把题设与结论互换即可得到逆命题,然后判断正误即可.【详解】解:“全等三角形的对应角相等”的题设是:两个三角形全等,结论是:对应角相等,因而逆命题是:对应角相等的三角形全等.是一个假命题.故答案为:假.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.【分析】根据多边形的外角和=360°求解即可.【详解】解:∵多边形的外角和为360°,∴边数==12,即12×15米=180米,故答案为:180.【点睛】本题考查了多边形的外角和,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和等于360°.12.-3【分析】根据题意可设=0,再根据题意得到方程的一个解为x=-1,然后把x=-1代入方程可求出k的值.【详解】解:设=0,∵分解后有一个因式是(x+1),∴方程应用因式分解法求解可得到x+1=0,解得x=-1,把x=-1代入方程得=0,解得k=-3.故答案为-3.【点睛】本题考查了因式分解的应用及解一元一次方程.把多项式转化为方程求解是解决问题的关键.13.【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求.【详解】联立得:,①+②得:5x=10,解得:x=2,把x=2代入①得:y=−2,代入得:,解得:,则原式=(3−1)2=4.故答案为:4.【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.14.【分析】根据垂线段最短可知,当时最短,再根据角平分线上的点到角的两边的距离相等可得,从而得解.【详解】解:垂线段最短,当时最短,是的平分线,,,,,即长度最小为1.故答案为:.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,解题的关键是:确定出最小时的位置是解题的关键.15.【分析】根据三角形三边关系进行求解即可;【详解】解:∵△ABC两边a=3,b=6,∴根据三角形的三边关系,得:6﹣3<c<3+6,即:3<c<9.故答案为:3<c<9.【点睛】本题解析:【分析】根据三角形三边关系进行求解即可;【详解】解:∵△ABC两边a=3,b=6,∴根据三角形的三边关系,得:6﹣3<c<3+6,即:3<c<9.故答案为:3<c<9.【点睛】本题主要考查了三角形三边关系,准确计算是解题的关键.16.6【分析】根据三角形的中线把三角形分成面积相等的两部分,即可解答.【详解】解:∵AD是BC上的中线,△ABC的面积是24,∴S△ABD=S△ACD=S△ABC=12,∵BE是△ABD中A解析:6【分析】根据三角形的中线把三角形分成面积相等的两部分,即可解答.【详解】解:∵AD是BC上的中线,△ABC的面积是24,∴S△ABD=S△ACD=S△ABC=12,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD=6,故答案为:6.【点睛】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.17.(1)1;(2);(3)【分析】(1)根据零指数幂、负指数幂和幂的运算公式计算即可;(2)根据整式乘除的运算性质计算即可;(3)先根据多项式乘以多项式展开,在合并同类项即可;【详解】(1解析:(1)1;(2);(3)【分析】(1)根据零指数幂、负指数幂和幂的运算公式计算即可;(2)根据整式乘除的运算性质计算即可;(3)先根据多项式乘以多项式展开,在合并同类项即可;【详解】(1)原式,,;(2)原式,,;(3)原式,,;【点睛】本题主要考查了实数的混合运算、幂的运算性质、整式乘除运算,准确计算是解题的关键.18.(1);(2);(3);(4).【分析】(1)先提公因式,再用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(3)先提符号,在用完全平方公式因式分解即可;(4)先利用平方差公解析:(1);(2);(3);(4).【分析】(1)先提公因式,再用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(3)先提符号,在用完全平方公式因式分解即可;(4)先利用平方差公式因式分解,再用完全平方公式因式分解即可【详解】解:(1);(2);(3);(4).【点睛】本题考查因式分解,掌握因式分解的方法与技巧是解题关键.19.(1);(2)【分析】(1)根据加减消元法解二元一次方程组即可,(2)根据去分母,去括号,移项合并同类项,化系数为1的步骤解一元一次不等式即可.【详解】(1)①②得:解得将代入①:解析:(1);(2)【分析】(1)根据加减消元法解二元一次方程组即可,(2)根据去分母,去括号,移项合并同类项,化系数为1的步骤解一元一次不等式即可.【详解】(1)①②得:解得将代入①:解得原方程组的解为:;(2)-≤1去分母,去括号,移项合并同类项,化系数为1:不等式的解集为:.【点睛】本题考查了加减消元法解二元一次方程组,解一元一次不等式,正确的计算是解题的关键.20.(1);(2).【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大解析:(1);(2).【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)去分母,得:,去括号,得:,移项,得:,合并同类项,得:,系数化为1,得:;(2)解不等式,得:,解不等式,得:,则不等式组的解集为.【点睛】本题考查的是解一元一次不等式及不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.(1)52°;(2)32°.【分析】(1)根据AB∥CD,可得∠END=∠EMB=76°,再根据平角定义和角平分线的定义即可求出∠PNC的度数;(2)根据∠APQ:∠QPN=1:3,可得∠QP解析:(1)52°;(2)32°.【分析】(1)根据AB∥CD,可得∠END=∠EMB=76°,再根据平角定义和角平分线的定义即可求出∠PNC的度数;(2)根据∠APQ:∠QPN=1:3,可得∠QPN=3∠APQ,根据AB∥CD,可得∠MPN=∠PNC=52°,再根据平角定义可得∠APQ=32°,进而可得∠PQD的度数.【详解】(1)∵AB∥CD,∴∠END=∠EMB=76°,∴∠ENC=180°﹣∠END=104°,∵NP平分∠ENC,∴∠PNC=∠ENC=52°;(2)∵∠APQ:∠QPN=1:3,∴∠QPN=3∠APQ,∵AB∥CD,∴∠MPN=∠PNC=52°,∴∠APN=180°﹣∠MPN=128°,∴∠APQ+∠QPN=128°,∴4∠APQ=128°,∴∠APQ=32°,∴∠PQD=∠APQ=32°.则∠PQD的度数为32°.【点睛】本题考查了平行线的性质和角平分线的定义,解决本题的关键是掌握平行线的性质.22.(1);(2)该公司有6种购买方案,方案1:购买10台乙型设备;方案2:购买1台甲型设备,9台乙型设备;方案3:购买2台甲型设备,8台乙型设备;方案4:购买3台甲型设备,7台乙型设备;方案5:购买4解析:(1);(2)该公司有6种购买方案,方案1:购买10台乙型设备;方案2:购买1台甲型设备,9台乙型设备;方案3:购买2台甲型设备,8台乙型设备;方案4:购买3台甲型设备,7台乙型设备;方案5:购买4台甲型设备,6台乙型设备;方案6:购买5台甲型设备,5台乙型设备;(3)最省钱的购买方案为:购买4台甲型设备,6台乙型设备.【分析】(1)由一台A型设备的价格是x万元,一台乙型设备的价格是y万元,根据题意得等量关系:购买一台甲型设备-购买一台乙型设备=2万元,购买4台乙型设备-购买3台甲型设备=2万元,根据等量关系,列出方程组,再解即可;(2)设购买甲型设备m台,则购买乙型设备(10-m)台,由题意得不等关系:购买甲型设备的花费+购买乙型设备的花费≤91万元,根据不等关系列出不等式,再解即可;(3)由题意可得:甲型设备处理污水量+乙型设备处理污水量≥2750吨,根据不等关系,列出不等式,再解即可.【详解】(1)依题意,得:,解得:.(2)设该治污公司购进m台甲型设备,则购进(10﹣m)台乙型设备,依题意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m为非零整数,∴m=0,1,2,3,4,5,∴该公司有6种购买方案,方案1:购买10台乙型设备;方案2:购买1台甲型设备,9台乙型设备;方案3:购买2台甲型设备,8台乙型设备;方案4:购买3台甲型设备,7台乙型设备;方案5:购买4台甲型设备,6台乙型设备;方案6:购买5台甲型设备,5台乙型设备.(3)依题意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.当m=4时,总费用为10×4+8×6=88(万元);当m=5时,总费用为10×5+8×5=90(万元).∵88<90,∴最省钱的购买方案为:购买4台甲型设备,6台乙型设备.【点睛】此题主要考查了二元一次方程组的应用和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程(组)和不等式.23.(1);(2)【分析】(1)根据题意设盒底边长,接口的宽度,分别为,,根据题意列方程组,再根据长宽高求得体积;(2)分别设第一个月和第二个月的销售量为盒,根据题意列出方程和不等式组,根据不等式解析:(1);(2)【分析】(1)根据题意设盒底边长,接口的宽度,分别为,,根据题意列方程组,再根据长宽高求得体积;(2)分别设第一个月和第二个月的销售量为盒,根据题意列出方程和不等式组,根据不等式确定二元一次方程的解,两个月的销售总量为盒【详解】(1)设设盒底边长为,接口的宽度为,则盒高是,根据题意得:解得:茶叶盒的容积是:答:该茶叶盒的容积是(2)设第一个月销售了盒,第二个月销售了盒,根据题意得:化简得:①第一个月只售出不到一半但超过三分之一的量即由①得:解得:是整数,所以为5的倍数或者或者答:这批茶叶共进了或者盒.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的求解,理解题意列出方程组和不等式组是解题的关键.24.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可;(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论