版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(2026年新教材)沪科版初中数学八年级下册教学课件2026年新版八年级下册数学(沪科版)目录一览表
18.1勾股定理数学活动
利用勾股定理进行尺规作图18.2勾股定理的逆定理数学拓展
两点之间的距离公式数学史话
勾股定理第19章
四边形19.1多边形数学史话
三角形的内角和与多边形的本质19.2平行四边形数学拓展
三角形的重心19.3矩形、菱形、正方形数学活动
切割后组拼正方形阅读与欣赏
完美矩形与完美正方形第20章
数据的初步分析20.1数据的频数分布数学活动
对课外作业时间的统计分析阅读与欣赏
地理中的统计图——平面正三角坐标图20.2数据的集中趋势20.3数据的离散程度20.4四分位数和箱线图20.5数据分组综合与实践
多边形的镶嵌综合与实践
体质健康测试中的数据分析第16章
二次根式16.1二次根式及其性质16.2二次根式的运算第17章
一元二次方程及其应用17.1一元二次方程17.2一元二次方程的解法数学活动
椰球游戏17.3一元二次方程的根的判别式17.4一元二次方程的根与系数的关系数学拓展
二次三项式的因式分解17.5一元二次方程的应用数学史话
一元高次方程第18章
勾股定理及其逆定理16.2二次根式的运算第十六章二次根式第1课时二次根式的乘除逐点导讲练课堂小结作业提升学习目标课时讲解1课时流程2二次根式的乘法积的算术平方根二次根式的除法商的算术平方根最简二次根式知识点二次根式的乘法知1-讲1
知1-讲特别提醒1.性质3中被开方数a、b既可以是数,也可以是式子,但都必须是非负的.2.二次根式相乘,被开方数的积中有开得尽方的因数或因式时一定要开方.3.二次根式相乘的结果是一个二次根式或一个有理式.感悟新知
知1-讲
感悟新知
知1-讲知1-练例1
解题秘方:紧扣“二次根式的乘法性质”计算.
知1-练解法提醒(1)直接用性质3计算.(2)按推广(1)计算.(3)按推广(2)计算,注意要将带分数化为假分数.知1-练知2-讲知识点积的算术平方根2
知2-讲特别提醒公式中的a、b既可以是一个数,也可以是一个式子.积中各个因式必须都为非负数,若不是非负数,应将其化成非负数再运用公式化简.知2-讲
感悟新知知2-练
例2解题秘方:紧扣“积的算术平方根的性质”进行计算.
感悟新知知2-练
先去掉负号,再计算.知2-练感悟新知
利用平方差公式分解因式.
知2-练感悟新知知3-讲知识点二次根式的除法3
既可以是数,也可以是式子.感悟新知知3-讲
知3-讲感悟新知
知3-练感悟新知
例3
知3-练感悟新知答案:B解题秘方:紧扣“二次根式除法法则”成立的条件求解.
解法提醒要求使等式成立的字母的取值范围,只需使等式的每部分都有意义.如二次根式的被开方数是非负数、分式的分母不为零、零指数幂和负整数指数幂的底数不为零等.知3-练知3-讲例4
知3-讲
知3-讲
解题秘方:紧扣“二次根式除法法则”进行计算.
知3-练感悟新知知4-讲知识点商的算术平方根4
a,b既可以是一个数,也可以是一个式子.知4-讲感悟新知特别提醒利用商的算术平方根的性质可以把被开方数中含有分母的二次根式化成被开方数不含分母的二次根式.感悟新知知4-讲
感悟新知知4-练
例5
解题秘方:紧扣“商的算术平方根的性质”进行化简.感悟新知知4-练
知4-练感悟新知方法利用商的算术平方根的性质化简二次根式的方法:1.若被开方数的分母是一个完全平方数(或式),则可以直接利用商的算术平方根的性质计算;2.若被开方数的分母不是完全平方数(或式),则可先将分式的分子、分母同时乘一个不等于0的数(或式),使分母变成一个完全平方数(或式),然后利用商的算术平方根的性质进行计算.感悟新知知4-练把下列各式的分母有理化:例6解题秘方:紧扣“分母有理化”的方法进行变形.
知4-练感悟新知
知4-练感悟新知解题通法去掉分母中的根号一般经历如下三步:“一移”,将分子、分母中能开得尽方的因数(式)开方后移到根号外;“二乘”,将分子、分母同乘分母的有理化因数(式);“三化”,化简计算.感悟新知知5-讲知识点最简二次根式51.定义满足下列两个条件的二次根式就是最简二次根式:被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.知5-讲感悟新知特别提醒分母中含有根式的式子不是最简二次根式.感悟新知知5-讲2.把二次根式化简成最简二次根式的步骤(1)“一分”,即利用因数(式)分解的方法把被开方数的分子、分母都化成质因数(式)的幂的乘积形式;(2)“二移”,即把能开得尽方的因数(式)用它的算术平方根代替,移到根号外,其中把根号内的分母中的因式移到根号外时,要注意应写在分母的位置上;(3)“三化”,即化去被开方数中的分母.感悟新知知5-练
例7
知5-练感悟新知解题秘方:紧扣最简二次根式的定义进行判断.解:(1)不是最简二次根式,因为被开方数中含有分母;(3)不是最简二次根式,因为被开方数是小数(即含有分母);(4)不是最简二次根式,因为被
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 导数函数零点教案
- 大班数学有用的统计教案(2025-2026学年)
- 饮料碳酸饮料教案
- 方案合集六教案
- 中班主题活动大楼里的孩子教案
- 人教新版英语五下Unitwhatswrongwithyou学习教案
- 网页设计制作电子教案
- 幼儿园好吃的橘子教案
- 部编统编一上语文第六七单元看拼音写词语公开课教案试卷复习练习(2025-2026学年)
- 外研社三年级起点三年级上册Pointtothedoor教案
- 班组安全基础培训
- 水厂调试方案范本
- 2025年《中外教育史》冲刺押题卷(附答案)
- 物流金融风险管理
- 国开24273丨中医药学概论(统设课)试题及答案
- 国家开放大学电大《当代中国政治制度(本)》形考任务4试题附答案
- 河道临时围堰施工方案
- 2025年广东省公需课《人工智能赋能制造业高质量发展》试题及答案
- 有机肥可行性研究报告
- 2025年-基于华为IPD与质量管理体系融合的研发质量管理方案-新版
- 法律职业资格考试客观题(试卷一)试卷与参考答案(2025年)
评论
0/150
提交评论