版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
The
complexity
dividendHowcompaniesturnscaleandcomplexityintorevenue,
marginandmarketshareContentsInbrief4Governing
theungovernable:Three
places
to
start10Bigger
is
better,except
whenit
isn’t5
Thecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshareRethinkingcomplexityin
the
age
of
AI243InbriefOrganizationalscalehasadvantages,buttheycomeatacost.
For
manygrowingcompanies,operationscangetsocomplexand
layered
thatdecision-making
slows
to
a
crawl.Costs
can
getembedded
so
deeply
in
processes
and
workflowsthatthey’re
hiddenfromview,
puttinga
relentlessandinvisibledrainon
productivityand
profits.AIisbuiltforcomplexenvironments.It
makesit
possiblefordecision-makerstosurface,analyzeandconnectvastamountsof
data
andworkstreams,
providingvisibilityinto
businessunits,supply
chains,operational
systems,internal
andexternalteams,customer
behaviorsandmore.AIturnsoperationalcomplexityinto
a
strategicadvantage—soorganizationsstay
nimble,
responsive
and
profitable
no
matter
how
largeor
howfastthey
grow.Theinsights
inthis
reportaredrawnfrom
our
clientwork,aswell
asfromour
recentsurveyof500senior
executives
atcompanies
with
revenuesofat
least$1
billion,
fromour30in-depth
interviewswithC-suite
leadersandfromour
empiricalanalysisof1,444
global
companies.
For
moreon
our
methodology,
please
see“Aboutthe
research”
on
page26.Thereisadualimperativeinthe
age
of
AI.Growingcompanies
mustfirstshifttheirthinkingaboutcomplexity:
ratherthanfocusingon
removing
it,theyshould
useAItoamplify“good”complexity—
the
kindthatdrivesgrowth,
revenueand
margin—andsimplifyorsunset“bad”complexitythatdrainsprofit.Second,they
must
rethinkthe
roleofAI
itself.Deployedcorrectly,AIcan
betheXfactorthat
allows
top-heavyorganizationsto
befullyincontrol
of
their
performance. Biggerisbetter,ungove
rnable:complexity
exceptwhenitisn’tThree
p
lacestostartin
the
age
of
AI
Thecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshareGove
rn
ingtheRethinking4Bigger
is
better,except
whenitisn’tThecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshareGove
rn
ingtheungovernable:RethinkingcomplexityThreep
lacesto
startexceptwhen
it
isn’tBiggeris
better,intheage
of
AIIn
brief5manygrowingcompaniesisthatscalecandevolveintocompetitiveliabilities.Decision-makingslows.Responsivenessgetscompromised.Products,servicesandinvestmentsbecomehardto
manage.Enterpriseprioritiesgetclouded.Experiencesgetdilutedacrosschannelsandtouchpoints.Thecostimplicationsarereal.
Insteadof
being
nimbletrailblazers,largerorganizationstendtogetslowerandmoremethodicalastheygrow.Their
growthmindsetsgetoverwhelmedbyoperationalcomplexity,withlowermarginsandfrustratedcustomerstoshow
for
it.Largerorganizationsshouldhaveformidableadvantagesoversmallerfirms.Theyoftenhaveaccesstodeepfinancialresourcestofundnewideas,researchand
projects.
Economiesof
scaleallowthemtonegotiatebetter
pricesand
build
strongersupplierpartnerships.Poolsoffirst-partydatagivethemvaluableinsightsintotheircustomers,products,suppliers,workers,processes,andevenpartnersandcompetitors.Theseadvantagescanbesignificant,buttheycomeatacostandoftenremain
unrealized.The
realityfor
Thecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshare
exceptwhenitisn’tThree
p
lacestostartintheageofAI
Inbriefungove
rnable:complexityGove
rn
ingtheRethinkingBiggeris
better,6Tosolvethecomplexitypuzzle,top-heavyorganizationstypicallyturntoarangeoftactics.Theyoftencentralizedecision-making,standardizetheirprocessesandintroducenewtechnologiestohelpmanageteamsandworkflows.Whilethesemethodscanhelptamecomplexity,rampantgrowthcreateschallengesthatoutpacethesetactics.Forexample,manylargeorganizations
evolve
intoconglomerateswithseparatebusinessunitsthathavecompetingpriorities,dilutingthestrategicdirectionoftheorganizationandimpactingfinancial
performance.Inothercases,businessesthatexpandintonewregions—thinkretail
outlets
or
infrastructureinvestments—seedeclinesinoperationalexcellenceandinconsistentcustomerexperiences,evenwithintheircoremarkets.Othersectors,suchastechnologyandbanking,oftenseeinnovationslowastheyjuggle
regulationsandnewbusiness
models.Theramificationscanbefar-reaching:takeoversoflargecompaniesareatanear-two-decadehigh,
and
firmswithweakrevenue-to-costdisciplineareseven
timesmorelikelyto
betargeted.1
The
impactsofactivistinvestorsoverthepast18
monthsshowsjusthowseriousthesechallengeshavebecome.“What’sreallyslowing
thecompanydownisbureaucracy:toomanylayers,toomany
signatures.”ManagingDirector,Strategy
andPlanning,
GlobalBankThe
relentless
leak
of
operational
complexity
Thecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshare
exceptwhenitisn’tThree
p
lacestostartintheageofAI
Inbriefungove
rnable:complexityGove
rn
ingtheRethinkingBiggeris
better,7Complexityisn’tsimplya
byproductof
scale—it’sbuiltintotheveryenginesmeanttodrive
growthacrossproducts,channels,marketsandexperiences.Managedcorrectly,complexitycanbetransformedintoasignificantcompetitiveadvantage.Butto
makethathappen,organizationsmustfirstrecognizewherecomplexitycomesfromandwhyitpersists.Growth-drivencomplexitycomesfromworkflows,reportinglayersanddecisionforumsthatarefocused
onallocatingcapitalandhelpingorganizationsmeettheirstrategicgoals.Complexityshowsupintheformofnewprocesses,teamsanddatasetsthat
layer
ontopofcurrentwaysofworking.Layersstack
upasgrowthcontinues,expandingthenumberofoperatingdriversthatneedtobe
managedand
making
it
more
difficultfor
leaderstoseeandunderstandwhat’shappeningacrossteams,projectsandbusinessunits.Two
forces
allow
this
typeofcomplexityto
growunchecked:Performance
variability
gets
hidden
insideaggregatedreports,makingit
hardto
differentiate
betweenhigh-performingandunderperformingassets.Thiscumulativereportingmethod—thenormforlargeorganizations—masksanomaliesanddeflectsaccountability,causingorganizationstoreactslowlytoopportunitieswhileincreasingcosts-to-serve.Relentlessdatasprawlandever-increasingmanagementlayersmaketheproblemworse
each
year.Inertiaallowsinefficientprocessesandbad
habitstohardeninplace,
leadingcapital
investments
togetmisaligned.Resourcesgetfragmentedacrosstoomanyinitiatives,productivitystumbles
undertheweightoftedioushandoffsandconfidenceerodesascustomers,partners,employeesandinvestorsbegin
toquestiontheorganization’sabilitytodelivervalue.“Totrulyenabledata-drivenaction,weneedtheintegrateddatamanagementandAIplatformstoprocessvast,disparatedataforstrategicclarity
andstandardizedinsights."ChiefMarketingOfficer,GlobalFoodCorporationTheroot
causes
of
complexity
Thecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshare
exceptwhenitisn’tThree
p
lacestostartintheageofAI
Inbriefungove
rnable:complexityGove
rn
ingtheRethinkingBiggeris
better,8Thehidden
costs
of
complexityComplexitydrivesupcostsin
subtlewaysthat
arehardtoquantify.Accentureresearch
shows
thatmostexecutivesstrugglewith:2•
Executiondisruptionsduetofrequentchangesinreportinglines
ororganizationalstructure•
Operationalfrictionduetofragmentedprocessesandreporting
requirementsacrossfunctionsandbusinessunits•
Inabilitytogettimelyinsightsduetodisconnectedsystemsor
sources•
Misalignmentacrossteamsduetodifferinggoals,incentivesor
leadershipstylesTransforming
complexityinto
advantageArtificialintelligence(AI)wasdesignedforthismoment.
Ithasevolvedquickly—fromclassicaltogenerativetoagenticandnowphysicalAI—to
alloworganizationstobettermanagecomplexityatscale.
WithAItoolssupportinghumanroles,
businessesnowhavetheframeworktheyneedtocapitalizeon“good”complexitythatdrives
marginand
marketdifferentiationwhileidentifyingandaddressing“bad”complexitythatslowsinnovationanddrainsprofit.AIisthe
linkthatturnsanorganization’s
scale
andcomplexityintoitsstrongestcompetitiveadvantage.Thecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshareGove
rn
ingtheungovernable:RethinkingcomplexityThreep
lacesto
startexceptwhen
it
isn’tBiggeris
better,intheage
of
AIIn
brief9Governing
the
ungovernable:
Threeplaces
to
startThecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshareGove
rn
ingtheungovernable:comp
lex
ityintheage
of
AIThreep
lacesto
startexceptwhen
it
isn’tBiggeris
better,RethinkingIn
brief10In
briefB
iggeris
better,exceptwhenitSortcomplexityintogood,badorgoneNotallcomplexityis
bad.
It’simportantto
understand
andcategorizecomplexitybecausesomeofit
isworthgrowing(figures1and2).Goodcomplexityincludesfoundationalaspectsofthe
business,suchasthe
types
of
customersand
industries
served,the
range
of
products
andservices
offered,the
languages
used(both
humandialectsandtechnicaldisciplines)and
regional
and
local
market
nuances.Goodcomplexity
underpinsinnovation
and
market
differentiation,allowingorganizationstodeliver
unique
products,servicesandsolutionstospecificcustomers
or
regions.
Thistype
of
complexity
is
vital
to
generating
revenueandstrengthening
market
relevance.1.Leanintocomplexity,
don’trun
fromitForyears,complexitywasseenastheenemyofefficiency.Butinaworldofdynamicmarkets,digitalinfrastructureandAI-drivenorchestration,complexity
isnolongerjustacosttomanage—it’sastrategicassettomaster.Theorganizationsthatwintomorrowwillbethosethatcanmanagemorelayers,tailormore
experiencesandmarketsandbalancemoretrade-offs
withoutbreakingstride.Badcomplexityaddseffort,costandconfusionwithout
improvingoutcomes.
It’softenthe
resultof
legacydecisions,siloedsystems,duplicatedprocessesor“just
incase”layersof
control.
Badcomplexitycreepsin
unnoticedand
compoundsover
time,clogging
decision-making
and
draggingdown
productivity
and
profits.Thecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshareGove
rn
ingtheungovernable:comp
lex
ityintheage
of
AIThreep
lacesto
startexceptwhen
it
isn’tBiggeris
better,RethinkingIn
brief11Insteadofbeingan
expense,complexityandscalecandeliverareturnoninvestedcapital(ROIC)
byreducingoperatingcostsandimprovinghowworkforcesandcapitalinvestments
aredeployed.This“complexitydividend”allowscompaniestogenerateROICbyusing
AI
agents
and
otheremergingtechnologiestoorchestrate
chaos—togoverntheungovernable.
Thecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshareIllustrative
example
from
a
manufacturing
company
Good
complexity
examples:
Bad
complexity
examples:Tailoredproductdesignforlocal/OverengineeredbillofmaterialswithregionalmarketsredundantSKUsFigure
1:FromCAPEX
toROIC—cashing-in
on
the
complexity
dividendRedundantdashboards,datalakesandlicense
sprawlUnderusedmanufacturingassetsbuiltfor
scale,not
agilityBloatedinventoriesfromfragmentedplanningorlackofvisibilityFlexibleinventorybufferstailoredtovolatiledemandprofilesAccretiveIPportfoliosthatsupportdifferentiated
pricingSpecializedanalyticsorAIservicesthatimproveforecastingUnderusedoroutdatedassetswithoverlapping
capabilitiesAdaptive,modularplantfootprintsalignedtodemandOne-off
freelance
and
project
spendscatteredacrossfunctionsAgilepodstructuresthatimprovecustomer
responseAcquisitionswithoutintegration,creating
hidden
duplicationsExcessivelayersofapprovalandreportinglinesCentralizeddatainfrastructuresupportingcross-unitAINet
PPECOGSSG&AOther
expensesWorkingcapitalNetotherassetsGoodwill&intangiblesDepreciationEBITDAEBITCapital
efficiencyROICModularequipment
based
depreciationGove
rn
ingtheungovernable:RethinkingcomplexityThreep
lacesto
startexceptwhen
it
isn’tSource:AccentureBiggeris
better,intheage
of
AIallowingusage-In
brief12Thisvaluematrixisastartingpointforinvestigatingoperationalcomplexity.Complexity
thatappearsin
the
tophalfof
thematrix
warrants
furtherinvestment
orrefinementandshouldbeprioritized,
givenitspotential
togenerate
value.Elementsin
thebottomhalfarecandidatesforsimplificationorelimination.For
a
deeperinvestigation,
examine
theunderlying
drivers
of
value,
thematurity
and
constraints
ofkey
enabling
technologiesandinterdependencies
across
functionsandprocesses.Meaningfulinsights
will
then
come
from
structured
analysis,
stakeholder
inputs
and
a
willingness
tointerrogatelong-
standing
assumptions.Low
organizational
burdenLightweight,
self-contained
complexityKeep
and
scalePreservecoredifferentiators,monitor forandcutoffcreep,empower
autonomywithguardrailsandfeed
withricherdatasignalstostay
aheadofchangeKeep
andreplatformEmbedAI-drivenorchestrationbycodifying
rule-basedprinciples,automatingroutinehandoffsandaugmentinghumandecisions
withmachineagentsMonitoror
fold
inKeepaneyeon
low-impact
rules
andapprovals,treatas“noise”andmonitorforcomplexitycreeps,while
resistingaddingnew
layersSunsetRetirelegacyapprovalsandfragmented
organizationallayers—sunsetcumbersomeworkflowsandredeploy
resourcestohigh-impactareasHighorganizationalburdenCostly,
brittleormanualatscaleSource:AccentureThecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshareLow
strategic
valueNiceto
have
but
littlestrategic
liftFigure
2:
Separating
good
complexity
frombadHigh
strategic
valueCoretogrowthor
marketedgeexamples
examplesBadcomplexity
GoodcomplexityGove
rn
ingtheungovernable:comp
lex
ityintheage
of
AIThreep
lacesto
startexceptwhen
it
isn’tBiggeris
better,RethinkingIn
brief1314Fromwhispertoroar:HowleadersdiscussandmanagecomplexityWhenwelookatcompanieswiththehighestprice-to-earnings(P/E)levelsandthefastestP/Egrowth,andthenreadadecadeoftheirearningscalls,twothingsstandout.First,marketleaderstalkaboutcomplexityfarmorethanothers—over60%moreoften—andthatfocushasrisensharply(theshareoftheircallsthataddressitisup~80%since2015).Thetopicsaren’tabstract.Theyfocusonthehardpartsofscale:thebreadthof
productsandcustomersegments,andhowdecision
rightsandoperatingstructureskeeppace.3Second,asignificantseparationshowsupintechnologyanddata.Marketleadersdiscusstech/datacomplexityroughlythreetimesmorethanpeers—
coveringintegration,datamodels,performanceanalyticsandAI.Andtheiremphasison“good”complexityinthisdomain(thekindthatenablesdifferentiationandspeed)hasquadrupledsince2015,
versusa60%increaseforpeers(figure3).4Fuelgrowth,notoverheadOrganizationsthatlearntomanagecomplexitycanservemorecustomersandmarketswithhyper-personalizedproducts,withoutinflatingunitcosts.They’rebetterequippedtoadaptglobalmodelstolocalnuances—whetherregulatory,culturalorchannel-
related—withoutfragmentingoperations.Theyempowertheirdistributedteamstoact
autonomously
whilestayingalignedinrealtime.Andbecausetheycanreconfigureprocessesontheflyandput
morecontrolinthehandsofcustomers,companies
canlaunchnewproductsandservicesfasterwhile
enablinghypercustomizationandpersonalization.Fortheseorganizations,theirvarietyofproductsandservicesactsasagrowthengine,nota
tax.Tofuelthatgrowth,complexitymustbepreventedfrommultiplyinguncontrollably.Newofferingsandoptionsshouldplugeasilyintoastablecore,notcausedisruptionsthatcascadeacrosstheenterprise.
Thatway,changesindecisionlogicbecomesimple
configurationupdates,notcodechanges,allowingguardrailsandthresholdstobeupdatedreliably.
Thecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshareexceptwhenitisn’tThree
placestostart
intheage
of
AIInbrief
ungovernable:complexityGoverningthe
RethinkingBiggeris
better,4x
3x1.6x Market
Leaders2015 Market
Leaders2024 Rest
2015 Rest2024Figure
3:
Talk
the
talk—averagenumber
of
earnings
callsreferencing
technology
and
data
complexityThecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshare0.70.60.50.40.30.20.10.0Goodcomplexityrelated
to
tech
&
dataBadcomplexityrelated
to
tech
&
dataAveragenumberofearn
ings
cal
lsGove
rn
ingtheungovernable:comp
lex
ityintheage
of
AISource:Accenture
ResearchThreep
lacesto
startexceptwhen
it
isn’tBiggeris
better,RethinkingIn
brief15localizedpricingandofferings,
special
deliveries,inventorymanagementandmore.Interactionsacross
warehouses,
stores,regionsandchannels
arehighly
automated
andcanbe
tailored
tocustomerneedsinreal
time.
Theever-
increasingcomplexityof
SKUs
and
vendorsismanaged
precisely—keptwhenitpays,prunedwhenitdoesn’t.Airlines
&
logistics—Airlines
andlogisticscompaniesmustcoordinatean
array
ofinterconnected
systems
inreal
time,underrigidrulebooks
thatguideoperations.Aglitchanywherein
thesystem—such
as
a
weather
delay
or
unplannedrepair—canaffectcrew
schedules,maintenance
plansand
theentire
transportationnetwork.Withdataina
varietyof
formats,scattered
across
siloed
systems,it
canbehard
topinpoint
therootcauseofaproblemorgaugeits
truecosts.Now,
withAIlivenetworkorchestrationfusing
weather,air-trafficcontrol,
crewpolicies,
aircraftmaintenancerequirements,gateavailability
and
connection
points,driftcanbe
spotted
asithappens.
Operations
canberevisedinreal
time—swappingaircraftorreroutingdeliveries,changingcrewrosters
withinrulesandre-routing
passengers
withconnections,
withpolicy-as-codekeeping
safetyandunionconstraintsintact.Automotive
&
mobility—Vehiclecomplexityandregulatoryandsafetyrequirementsmakeitdifficult
toreconfigurevehicles
fordifferentbuyersorregions.But
with
software-Buildthebrainpower,unleashAI'spowerTounlockAI's
fullpotential,companiesneed
togiveAIagents
the“brainpower”theyneed
toworkalongsidehumans—theorganizationalintelligence
toorchestrateworkflows,analyzereal-timedata
fromrobotsandsensors,
makedecisionsand
act
autonomously.
Thisrequiresbuildingacognitive
foundation
thatdigitally
translatesinstitutionalknowledgeand
workflowsintoa
formAIcaninterpretandactupon.Likeacentralnervoussystem,
this
intelligencelayerconnectspeople,processesand
datathroughstreamlined,modularsystemsbuilt
toadapt—allanchoredin
trusteddata,clear
governance
and
well-definedinterfaces
thatmakehuman-machinecollaborationseamlessandpredictable.
Theprize
forgettingitrightisgrowth—inmarketshare,margins,innovationandreputation.Thisisn’ttheory.Companiesare
creating
these
organizational“nervoussystems”thatprocesscomplexity
inreal-time,connectingdisparateoperationsandenabling
AI
torespond
withspeed
andprecision.Retail
&
CPG—Monthlyplanning,siloedoperations
andunstructureddatahistoricallymadereal-timeorchestration
unrealistic
forretailersandconsumerpackaged
goods(CPG)companies.
Thesecompanies
arenowusingorchestratednetworks
tocollaborateacross
channelsandcoordinateactivitiesaroundseasonalpromotions,defined
vehicles,manufacturersarenowable
to
offer
awiderangeof
variants—different
trims,regions,regulations,
safety
features—andusecontinuousover-the-air(OTA)updates
tokeep
theirproductscurrent.AI
orchestratesproductconfigurationand
compliance
acrossmarkets,schedulessoftwareupdates
for
vehiclesbasedon
fleetdataandrisk,adapts
supply
andproduction
wheneverthere’sachangeinregulationsorparts,andusespolicy-as-code
tokeep
vehiclecertificationand
safetyregulations
intact.Banking—Banksandcapitalmarkets
firms
facerelentlesspressure
froma
volatilemacroenvironment,ongoingdigitaldisruptionand
theneed
to
scale
complexlegacyoperationsandinfrastructure
tomeet
thenextchapterofgrowth.
Tomeet
thesechallengeshead
on,banks
areembracingagentic
AI
to
tacklecomplexity
and
accelerate
their
transformationefforts.
Thisreinventionincludesmodernizinglegacyinfrastructure
toreduce
technicaldebt,
streamliningcompliance
throughcontrols
assessmentandautomation,andreducing
overall
complexity
andfragmentation
throughagenticAI-poweredprocessre-engineeringand
workfloworchestration.Notonlyisagentic
AIenablingleadingbanks
toaccessnew
frontiers
ofperformanceandcustomer
engagement,it
is
alsoaccelerating
thespeed
to
value
for
those
thatare
at
thestartof
their
transformation.
Thecomplexitydividend:Howcompaniesturnscaleandcomplexityintorevenue,marginandmarketshare
exceptwhenitisn’tThree
p
lacestostartin
the
age
of
AI
Inbrief
ungove
rnable:complexityGove
rn
ingthe
RethinkingBiggeris
better,162.Orchestrate
workflowsand
amplify
goodcomplexityMorecomplexity—goodorbad—createsmorework.ThepromiseofAIissimple:
it
takes
on
that
extrawork.
Itembedsitselfacrossbothanorganization
and
itsvaluechaintowatchfordrift,adaptontheflyand
amplifywhat’sworking.AIisthe
keyto
movingfastwithoutlosingcontrol.
Itallowsgrowingcompanies
tobethenimble,responsive
powerhousestheywere
meantto
be.DrivevarietyupandcostsoutInthepast,operatingcostsscaledwithvariety.Morevarietyinacompany’sproducts,services,channels,
marketsandoffersmeantmore
sales—and
morecoordination,handoffsandrework.
Ratherthanintroducingeconomiesofscale,varietyactuallydrove
unitcostsup.ButAI
runningon
a
stable,
modular
core
allowsahigherpercentageofworkto
be“configured”
ratherthanhandcrafted.Sotasksgofaster,rework
isreducedandmargincostscomedown.WithAI-enabledorchestrationacrosstheentirevaluechain,thecoordinationloadthatotherwisewouldbehandledby
additional
management
layersisautomatedwithAI.
Itincreaseshow
muchworkca
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GB-T 13602-2010船舶驾驶室集中控制台(屏)》专题研究报告
- 《GBT 4857.17-2017 包装 运输包装件基本试验 第 17 部分:编制性能试验大纲的通 用规则》专题研究报告
- 《GBT 34966.3-2017 卫星导航增强信息互联网传输 第 3 部分:数据传输格式》专题研究报告
- 预制菜产业供应链信息溯源协议
- 智能楼宇技师(高级)考试试卷及答案
- 种子行业种子检验员岗位招聘考试试卷及答案
- 2026学校教师培训工作计划(3篇)
- 2025年电视内镜手术系统合作协议书
- 膀胱癌的术后随访重点
- 慢性支气管炎的饮食调理
- 酒类进货合同范本
- 2026年教师资格之中学综合素质考试题库500道及答案【真题汇编】
- TCEC5023-2020电力建设工程起重施工技术规范报批稿1
- 2025秋国开《人力资源管理理论与实务》形考任务1234参考答案
- 2026年5G网络升级培训课件
- 2026云南昆明铁道职业技术学院校园招聘4人考试笔试参考题库及答案解析
- 模板工程技术交底
- 广东省广州市越秀区2024-2025学年上学期期末考试九年级数学试题
- 2025年区域经济一体化发展模式可行性研究报告及总结分析
- 医疗器械全生命周期有效性管理策略
- 课标考试2025年版《义务教育数学课程标准》测试卷试题库(和答案)
评论
0/150
提交评论