版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏常熟中学高一数学第一学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,若存在实数,使得,则的取值范围是()A. B.C. D.2.已知正方形的边长为4,动点从点开始沿折线向点运动,设点运动的路程为,的面积为,则函数的图像是()A. B.C. D.3.如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,其中恒成立的为()A.①③ B.③④C.①④ D.②③4.下列函数是奇函数,且在上单调递增的是()A. B.C. D.5.已知全集,集合,则A. B.C. D.6.在轴上的截距分别是,4的直线方程是A. B.C. D.7.已知函数,若,则的值为A. B.C.-1 D.18.命题“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”9.已知平面直角坐标系中,的顶点坐标分别为、、,为所在平面内的一点,且满足,则点的坐标为()A. B.C. D.10.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行C.异面 D.以上都有可能二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则___________.12.写出一个同时具有下列三个性质函数:________.①;②在上单调递增;③.13.点分别为圆与圆上的动点,点在直线上运动,则的最小值为__________14.=______15.直线的倾斜角为,直线的倾斜角为,则__________16.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的最小正周期和在上的值域;(2)若,求的值18.已知函数,其中,再从条件①、条件②、条件③这三个条件中选择两个作为已知.条件①:;条件②:的最小正周期为;条件③:的图象经过点(1)求的解析式;(2)求的单调递增区间19.函数的定义域为,且对一切,都有,当时,总有.(1)求的值;(2)判断单调性并证明;(3)若,解不等式.20.已知不等式的解集为(1)求a的值;(2)若不等式的解集为R,求实数m的取值范围.21.记函数的定义域为集合,函数的定义域为集合(Ⅰ)求集合;(Ⅱ)若,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据给定条件求出函数的值域,由在此值域内解不等式即可作答.【详解】因函数的值域是,于是得函数的值域是,因存在实数,使得,则,因此,,解得,所以的取值范围是.故选:B2、D【解析】当在点的位置时,面积为,故排除选项.当在上运动时,面积为,轨迹为直线,故选选项.3、A【解析】分析:如图所示,连接AC、BD相交于点O,连接EM,EN(1)由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC.可得AC⊥平面SBD.由已知E,M,N分别是BC,CD,SC的中点,利用三角形的中位线可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,进而得到AC⊥平面EMN,AC⊥EP;(2)由异面直线的定义可知:EP与BD是异面直线,因此不可能EP∥BD;(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;(4)由(1)同理可得:EM⊥平面SAC,可用反证法证明:当P与M不重合时,EP与平面SAC不垂直详解:如图所示,连接AC、BD相交于点O,连接EM,EN对于(1),由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确故选A点睛:本题考查了空间线面、面面的位置关系判定,属于中档题.对于这种题目的判断一般是利用课本中的定理和性质进行排除,判断.还可以画出样图进行判断,利用常见的立体图形,将点线面放入特殊图形,进行直观判断.4、D【解析】利用幂函数的单调性和奇函数的定义即可求解.【详解】当时,幂函数为增函数;当时,幂函数为减函数,故在上单调递减,、和在上单调递增,从而A错误;由奇函数定义可知,和不是奇函数,为奇函数,从而BC错误,D正确.故选:D.5、C【解析】由集合,根据补集和并集定义即可求解.【详解】因为,即集合由补集的运算可知根据并集定义可得故选:C【点睛】本题考查了补集和并集的简单运算,属于基础题.6、B【解析】根据直线方程的截距式写出直线方程即可【详解】根据直线方程的截距式写出直线方程,化简得,故选B.【点睛】本题考查直线的截距式方程,属于基础题7、D【解析】,选D点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.8、D【解析】根据特称命题的否定是全称命题,即可得出命题的否定形式【详解】因为特称命题的否定是全称命题,所以命题“,使”的否定形式为:,使故选:D9、A【解析】设点的坐标为,根据向量的坐标运算得出关于、的方程组,解出这两个未知数,可得出点的坐标.【详解】设点的坐标为,,,,,即,解得,因此,点的坐标为.故选:A.【点睛】本题考查向量的坐标运算,考查计算能力,属于基础题.10、B【解析】因为G1,G2分别是△SAB和△SAC的重心,所以,所以.又因为M、N分别为AB、AC的中点,所以MN//BC,所以考点:线面平行的判定定理;线面平行的性质定理;公理4;重心的性质点评:我们要掌握重心性质:若G1为△SAB的重心,M为AB中点,则二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】由,即可求出结果.【详解】由知,则,又因为,所以.故答案:0.12、或其他【解析】找出一个同时具有三个性质的函数即可.【详解】例如,是单调递增函数,,满足三个条件.故答案为:.(答案不唯一)13、7【解析】根据题意,算出圆M关于直线对称的圆方程为.当点P位于线段上时,线段AB的长就是的最小值,由此结合对称的知识与两点间的距离公式加以计算,即可得出的最小值.【详解】设圆是圆关于直线对称的圆,
可得,圆方程为,
可得当点C位于线段上时,线段AB长是圆N与圆上两个动点之间的距离最小值,
此时的最小值为AB,
,圆的半径,
,
可得因此的最小值为7,
故答案为7.点睛:圆中的最值问题往往转化动点与圆心的距离问题,本题中可以转化为,再利用对称性求出的最小值即可14、【解析】由题意结合指数的运算法则和对数的运算法则整理计算即可求得最终结果.【详解】原式=3+-2=.故答案为点睛】本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题15、【解析】,所以,,故.填16、【解析】由f(x+1)为奇函数,f(x+2)为偶函数,可得,,再结合已知的解析式可得,然后结合已知可求出,从而可得当时,,进而是结合前面的式子可求得答案【详解】因为f(x+1)为奇函数,所以的图象关于点对称,所以,且因为f(x+2)为偶函数,所以的图象关于直线对称,,所以,即,所以,即,当x∈[1,2]时,f(x)=ax2+b,则,因为,所以,得,因为,所以,所以当时,,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)由三角函数中的恒等变换应用化简函数解析式为f(x)=,进而得到函数的周期与值域;(2)由(1)知,利用二倍角余弦公式可得所求.【详解】(1)由已知,,,∴又,则所以的最小正周期为在时的值域为.(2)由(1)知,所以则【点睛】本题考查三角函数的图像与性质,考查三角函数的化简求值,考查恒等变形能力,属于中档题.18、(1)条件选择见解析,;(2)单调递增区间为,.【解析】(1)利用三角恒等变换化简得出.选择①②:由可求得的值,由正弦型函数的周期公式可求得的值,可得出函数的解析式;选择②③:由正弦型函数的周期公式可求得的值,由可求得的值,可得出函数的解析式;选择①③:由可求得的值,由结合可求得的值,可得出函数的解析式;(2)解不等式,可得出函数单调递增区间.【小问1详解】解:.选择①②:因为,所以,又因为的最小正周期为,所以,所以;选择②③:因为的最小正周期为,所以,则,又因为,所以,所以;选择①③:因为,所以,所以又因为,所以,所以,又因为,所以,所以【小问2详解】解:依题意,令,,解得,,所以的单调递增区间为,.19、(1)(2)是上的增函数,证明见解析(3)【解析】(1)令代入即可.(2)证明单调性的一般思路是取,且再计算,故考虑取,代入,再利用当时,总有即可算得的正负,即可证明单调性.(3)利用将3写成的形式,再利用前两问的结论进行不等式的求解即可.【详解】(1)令,得,∴.(2)是上的增函数,证明:任取,且,则,∴,∴,即,∴是上的增函数.(3)由及,可得,结合(2)知不等式等价于,可得,解得.所以原不等式的解集为.【点睛】(1)单调性的证明方法:设定义域内的两个自变量,再计算,若,则为增函数;若,则为减函数.计算化简到最后需要判断每项的正负,从而判断的正负(2)利用单调性与奇偶性解决抽象函数不等式的问题,注意化简成的形式,若在区间上是增函数,则,并注意定义域.若在区间上是减函数,则,并注意定义域.20、(1);(2).【解析】(1)根据题意得到方程的两根为,由韦达定理可得到结果;(2)不等式的解集为R,则解出不等式即可.【详解】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年一级造价师考试题库300道必考
- 项目经理实战面试题及答案
- 2024年陕西航天职工大学辅导员招聘考试真题汇编附答案
- 储能系统监控员考试题集
- 2026年心理咨询师之心理咨询师二级技能考试题库含完整答案【网校专用】
- 2024年杞县幼儿园教师招教考试备考题库及答案1套
- 2025甘肃省文化和旅游厅直属事业单位引进高层次人才15人考试题库及答案1套
- 2025年山西兵器工业职工大学辅导员考试参考题库附答案
- 2026年质量员之土建质量基础知识考试题库附答案(达标题)
- 2026河北国有资产运营公司招聘面试题及答案
- 2025年海北朵拉农牧投资开发有限公司招聘3人备考题库含答案详解
- 2025年港口物流智能化系统建设项目可行性研究报告
- T-CNHC 14-2025 昌宁县茶行业技能竞赛规范
- 薄壁零件冲床的运动方案设计模板
- 2025地球小博士知识竞赛试题及答案
- 军人体能训练标准化手册
- 住院患者等待时间优化与满意度策略
- 2026中国储备粮管理集团有限公司黑龙江分公司招聘98人考试模拟卷附答案解析
- 2023年十堰市税务系统遴选笔试真题汇编附答案解析
- 投资银行核心业务操作流程与案例分析
- 2025辅警年度个人总结(2篇)
评论
0/150
提交评论