版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区北京八中乌兰察布分校2026届数学高二上期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设数列的前项和为,且,则()A. B.C. D.2.若直线与平行,则实数m等于()A.1 B.C.4 D.03.某综合实践小组设计了一个“双曲线型花瓶”.他们的设计思路是将某双曲线的一部分(图1中A,C之间的曲线)绕其虚轴所在直线l旋转一周,得到花瓶的侧面,花瓶底部是平整的圆面,如图2.该小组给出了图1中的相关数据:,,,,,其中B是双曲线的一个顶点.小组中甲、乙、丙、丁四位同学分别用不同的方法估算了该花瓶的容积(忽略瓶壁和底部的厚度),结果如下表所示学生甲乙丙丁估算结果()其中估算结果最接近花瓶的容积的同学是()(参考公式:,,)A.甲 B.乙C.丙 D.丁4.直线与曲线相切于点,则()A. B.C. D.5.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为()A.99 B.131C.139 D.1416.与向量平行,且经过点的直线方程为()A. B.C. D.7.抛物线的准线方程是A. B.C. D.8.给出下列判断,其中正确的是()A.三点唯一确定一个平面B.一条直线和一个点唯一确定一个平面C.两条平行直线与同一条直线相交,三条直线在同一平面内D.空间两两相交的三条直线在同一平面内9.为迎接2022年冬奥会,某校在体育冰球课上加强冰球射门训练,现从甲、乙两队中各选出5名球员,并分别将他们依次编号为1,2,3,4,5进行射门训练,他们的进球次数如折线图所示,则在这次训练中以下说法正确的是()A.甲队球员进球的中位数比乙队大 B.乙队球员进球的中位数比甲队大C.乙队球员进球水平比甲队稳定 D.甲队球员进球数的极差比乙队小10.已知函数在定义域内单调递减,则实数的取值范围是()A. B.C. D.11.现从名男医生和名女医生中抽取两人加入“援鄂医疗队”,用表示事件“抽到的两名医生性别相同”,表示事件“抽到的两名医生都是女医生”,则()A. B.C. D.12.直线,若的倾斜角为60°,则的斜率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线与直线互相垂直,则___________.14.若直线与曲线没有公共点,则实数的取值范围是____________15.在数列中,满足,则________16.在等比数列中,,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.18.(12分)已知数列满足,(1)设,求证:数列是等比数列;(2)求数列的前项和19.(12分)(1)已知等轴双曲线的上顶点到一条渐近线的距离为,求此双曲线的方程;(2)已知抛物线的焦点为,设过焦点且倾斜角为的直线交抛物线于,两点,求线段的长20.(12分)在直角坐标系中,以坐标原点O为圆心的圆与直线相切.(1)求圆O的方程;(2)设圆O交x轴于A,B两点,点P在圆O内,且是、的等比中项,求的取值范围.21.(12分)已知函数.(1)求函数在处的切线方程;(2)求函数在区间上的最大值与最小值.22.(10分)已知椭圆的左,右焦点为,椭圆的离心率为,点在椭圆C上(1)求椭圆C的方程;(2)点T为椭圆C上的点,若点T在第一象限,且与x轴垂直,过T作两条斜率互为相反数的直线分别与椭圆C交于点M,N,探究直线的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用,把代入中,即可求出答案.【详解】当时,.当时,.故选:C.2、B【解析】两直线平行的充要条件【详解】由于,则,.故选:B3、D【解析】根据几何体可分割为圆柱和曲边圆锥,利用圆柱和圆锥的体积公式对几何体的体积进行估计即可.【详解】可将几何体看作一个以为半径,高为的圆柱,再加上两个曲边圆锥,其中底面半径分别为,,高分别为,,,,所以花瓶的容积,故最接近的是丁同学的估算,故选:D4、A【解析】直线与曲线相切于点,可得求得的导数,可得,即可求得答案.【详解】直线与曲线相切于点将代入可得:解得:由,解得:.可得,根据在上,解得:故故选:A.【点睛】本题考查了根据切点求参数问题,解题关键是掌握函数切线的定义和导数的求法,考查了分析能力和计算能力,属于中档题.5、D【解析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:由图可得,则.故选:D6、A【解析】利用点斜式求得直线方程.【详解】依题意可知,所求直线的斜率为,所以所求直线方程为,即.故选:A7、C【解析】根据抛物线的概念,可得准线方程为8、C【解析】根据确定平面的条件可对每一个选项进行判断.【详解】对A,如果三点在同一条直线上,则不能确定一个平面,故A错误;对B,如果这个点在这条直线上,就不能确定一个平面,故B错误;对C,两条平行直线确定一个平面,一条直线与这两条平行直线都相交,则这条直线就在这两条平行直线确定的一个平面内,故这三条直线在同一平面内,C正确;对D,空间两两相交的三条直线可确定一个平面,也可确定三个平面,故D错误.故选:C9、C【解析】根据折线图,求出甲乙中位数、平均数及方差、极差,即可判断各选项的正误.【详解】由题图,甲队数据从小到大排序为,乙队数据从小到大排序为,所以甲乙两队的平均数都为5,甲、乙进球中位数相同都为5,A、B错误;甲队方差为,乙队方差为,即,故乙队球员进球水平比甲队稳定,C正确.甲队极差为6,乙队极差为4,故甲队极差比乙队大,D错误.故选:C10、D【解析】由题意转化为,恒成立,参变分离后转化为,求函数的最大值,即可求解.【详解】函数的定义域是,,若函数在定义域内单调递减,即在恒成立,所以,恒成立,即设,,当时,函数取得最大值1,所以.故选:D11、A【解析】先求出抽到的两名医生性别相同的事件的概率,再求抽到的两名医生都是女医生事件的概率,然后代入条件概率公式即可【详解】解:由已知得,,则,故选:A【点睛】此题考查条件概率问题,属于基础题12、D【解析】直线,斜率乘积为,斜线斜率等于倾斜角的正切值.【详解】,,所以.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】由直线垂直的性质求解即可.【详解】由题意得,解得.故答案为:14、;【解析】可化简曲线的方程为,作出其图形,数形结合求临界值即可求解.【详解】由可得,所以曲线为以为圆心,的下半圆,作出图形如图:当直线过点时,,可得,当直线与半圆相切时,则圆心到直线的距离,可得:或(舍),若直线与曲线没有公共点,由图知:或,所以实数的取值范围是:,故答案为:15、15【解析】根据递推公式,依次代入即可求解.【详解】数列满足,当时,可得,当时,可得,当时,可得,故答案为:15.16、【解析】设等比数列的公比为,由题意可知和同号,结合等比中项的性质可求得的值.【详解】设等比数列的公比为,则,由等比中项的性质可得,因此,.故答案为:.【点睛】本题考查等比中项的计算,解题时不要忽略了对应项符号的判断,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)联立直线方程与双曲线方程,求得交点的坐标,再用两点之间的距离公式即可求得;(2)根据(1)中所求,利用两点之间的距离公式,即可求得三角形周长.【小问1详解】设点的坐标分别为,由题意知双曲线的左、右焦点坐标分别为、,直线的方程,与联立得,解得,代入的方程为分别解得.所以.【小问2详解】由(1)知,,,所以△的周长为.18、(1)证明见解析;(2).【解析】(1)将变形为,得到为等比数列,(2)由(1)得到的通项公式,用错位相减法求得【详解】(1)由,,可得,因为则,,可得是首项为,公比为的等比数列,(2)由(1),由,可得,,,上面两式相减可得:,则【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和(2)错位相减:用于等差数列与等比数列的积数列的求和(3)分组求和:用于若干个等差或等比数列和或差数列的求和(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.19、(1);(2)8.【解析】(1)由等轴双曲线的一条渐近线方程为,再由点到直线距离公式求解即可;(2)求得直线方程代入抛物线,结合焦点弦长求解即可.【详解】(1)由等轴双曲线的一条渐近线方程为,且顶点到渐近线的距离为,可得,解得,故双曲线方程(2)抛物线的焦点为直线的方程为,即与抛物线方程联立,得,消,整理得,设其两根为,,且由抛物线的定义可知,所以,线段的长是【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式20、(1);(2).【解析】(1)根据题意设出圆方程,结合该圆与直线相切,求得半径,则问题得解;(2)设出点的坐标为,根据题意,求得的等量关系,再构造关于的函数关系,求得函数值域即可.【小问1详解】根据题意,设的方程为,又该圆与直线相切,故可得,则圆的方程为.【小问2详解】对圆:,令,则,不妨设,则,设点,因为点在圆内,故;因为是、的等比中项,故可得:,则,整理得;由可得,解得,则.故答案为:.21、(1)(2),【解析】(1)根据导数的几何意义即可求解;(2)根据导数的正负判断f(x)的单调性,根据其单调性即可求最大值和最小值.【小问1详解】,切点为(1,-2),∵,∴切线斜率,切线方程为;【小问2详解】令,解得,1200极大值极小值2∵,,∴当时,,.22、(1);(2)直线的斜率为定值,且定值为.【解析】(1)根据椭圆的离心率及所过的点求出椭圆参数a、b,即可得椭圆标准方程.(2)由题设得,法一:设为,联立椭圆方程应用韦达定理求M坐标,根据与斜率关系求N的坐标,应用两点式求斜率;法二:设为,,联立椭圆方程,应用韦达定理及得到关于参数m、k的方程,即可判断是否为定值.【小问1详解】由题意,则,又,所以椭圆C方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 恒瑞医药人力资源经理职位面试题解析
- 木工板材合同范本
- 木材转运合同范本
- 木箱包装合同范本
- 广告展厅合同范本
- 2025年上海教师职称题库及答案
- 2026数字重庆大数据应用发展公司招聘面试题及答案
- 2025广西工艺美术研究院有限公司所属企业绢麻所12月招聘2人备考题库附答案
- 2026年中级注册安全工程师之安全生产法及相关法律知识考试题库500道含答案(基础题)
- 2026年校园招聘考试试题附完整答案(考点梳理)
- 钢板租赁合同条款(2025版)
- 辐射性白内障的发现与研究
- 珠海市产业和招商扶持政策汇编(2025年版)
- 国开机考 答案2人力资源管理2025-06-21
- 物理●山东卷丨2024年山东省普通高中学业水平等级考试物理试卷及答案
- 提升会计职业素养的试题及答案
- 电动吸盘出租合同协议
- 胃穿孔的相关试题及答案
- 制药行业清洁生产标准
- 教育学原理知到智慧树章节测试课后答案2024年秋浙江师范大学
- 医学影像技术技士题库
评论
0/150
提交评论