云南省德宏市2026届高二上数学期末学业水平测试模拟试题含解析_第1页
云南省德宏市2026届高二上数学期末学业水平测试模拟试题含解析_第2页
云南省德宏市2026届高二上数学期末学业水平测试模拟试题含解析_第3页
云南省德宏市2026届高二上数学期末学业水平测试模拟试题含解析_第4页
云南省德宏市2026届高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省德宏市2026届高二上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等比数列中,,是方程的两个实根,则()A.-1 B.1C.-3 D.32.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A. B.C. D.3.已知是上的单调增函数,则的取值范围是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b24.在等差数列中,,则等于A.2 B.18C.4 D.95.已知复数满足(其中为虚数单位),则复数的虚部为()A. B.C. D.6.抛物线准线方程为()A. B.C. D.7.已知等比数列的前n项和为,且满足公比0<q<1,<0,则下列说法不正确的是()A.一定单调递减 B.一定单调递增C.式子-≥0恒成立 D.可能满足=,且k≠18.已知函数在上单调递增,则实数a的取值范围为()A. B.C. D.9.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式解集是A. B.C. D.10.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.11.已知x是上的一个随机的实数,则使x满足的概率为()A. B.C. D.12.已知是两条不同的直线,是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则实数m的值是___________.14.已知线段AB的长度为3,其两个端点A,B分别在x轴、y轴上滑动,点M满足.则点M的轨迹方程为______15.已知椭圆交轴于A,两点,点是椭圆上异于A,的任意一点,直线,分别交轴于点,,则为定值.现将双曲线与椭圆类比得到一个真命题:若双曲线交轴于A,两点,点是双曲线上异于A,的任意一点,直线,分别交轴于点,,则为定值___16.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.18.(12分)如图是一抛物线型机械模具的示意图,该模具是抛物线的一部分且以抛物线的轴为对称轴,已知顶点深度4cm,口径长为12cm(1)以顶点为坐标原点建立平面直角坐标系(如图),求该抛物线的标准方程;(2)为满足生产的要求,需将磨具的顶点深度减少1cm,求此时该磨具的口径长19.(12分)已知命题p:方程的曲线是焦点在y轴上的双曲线;命题q:方程无实根.若p或q为真,¬q为真,求实数m的取值范围.20.(12分)已知直线l过点A(﹣3,1),且与直线4x﹣3y+t=0垂直(1)求直线l的一般式方程;(2)若直线l与圆C:x2+y2=m相交于点P,Q,且|PQ|=8,求圆C方程21.(12分)已知抛物线的焦点为F,倾斜角为45°的直线m过点F,若此抛物线上存在3个不同的点到m的距离为,求此抛物线的准线方程22.(10分)如图所示,四棱锥的底面为矩形,,,过底面对角线作与平行的平面交于点(1)求二面角的余弦值;(2)求与所成角的余弦值;(3)求与平面所成角的正弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由韦达定理可知,结合等比中项的性质可求出.【详解】解:在等比数列中,由题意知:,,所以,,所以且,即.故选:B.2、B【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解【详解】由各路口信号灯工作相互独立,可得某人从甲地到乙地恰好遇到2次红灯的概率:故选:B3、A【解析】利用三次函数的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题【详解】∵∴∵函数是上的单调增函数∴在上恒成立∴,即.∴故选A.【点睛】可导函数在某一区间上是单调函数,实际上就是在该区间上(或)(在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式来进行求解.4、D【解析】利用等差数列性质得到,,计算得到答案.详解】等差数列中,故选D【点睛】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.5、A【解析】由题目条件可得,即,然后利用复数的运算法则化简.【详解】因为,所以,则故复数的虚部为.故选:A.【点睛】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.6、D【解析】由抛物线的准线方程即可求解【详解】由抛物线方程得:.所以,抛物线的准线方程为故选D【点睛】本题主要考查了抛物线的准线方程,属于基础题7、D【解析】根据等比数列的通项公式,前n项和的意义,可逐项分析求解.【详解】因为等比数列的前n项和为,且满足公比0<q<1,<0,所以当时,由可得,故数列为增函数,故B正确;由0<q<1,<0知,所以,故一定单调递减,故A正确;因为当时,,,所以,即-,当时,,综上,故C正确;若=,且k≠1,则,即,因为,故,故矛盾,所以D不正确.故选:D8、D【解析】根据题意参变分离得到,求出的最小值,进而求出实数a的取值范围.【详解】由题意得:在上恒成立,即,其中在处取得最小值,,所以,解得:,故选:D9、B【解析】设.由,得,故函数在上单调递减.由为奇函数,所以.不等式等价于,即,结合函数的单调性可得,从而不等式的解集为,故答案为B.考点:利用导数研究函数的单调性.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为,即得,当是形如时构造;当是时构造,在本题中令,(),从而求导,从而可判断单调递减,从而可得到不等式的解集10、A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.11、B【解析】先解不等式得到的范围,再利用几何概型的概率公式进行求解.【详解】由得,即,所以使x满足的概率为故选:B.12、B【解析】根据垂直关系的性质可判断.【详解】由题,,则或,若,则或或与相交,故充分性不成立;若,则必有,故必要性成立,所以“”是“”的必要不充分条件.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】结合已知条件和空间向量的数量积的坐标公式即可求解.【详解】因为,所以,解得.故答案为:.14、【解析】设出动点,根据已知条件得到关于的方程.【详解】设,由,有,得,所以,由得:,所以点的轨迹的方程是.故答案为:15、-【解析】由双曲线的方程可得,的坐标,设的坐标,代入双曲线的方程可得的横纵坐标的关系,求出直线,的方程,令,分别求出,的纵坐标,求出的表达式,整理可得为定值【详解】由双曲线的方程可得,,设,则,可得,直线的方程为:,令,则,可得,直线的方程为,令,可得,即,∴,,,故答案为:-另解:双曲线方程化为,只是将的替换为-,故答案也是只需将中的替换为-即可.故答案为:-.16、18【解析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查【详解】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是前四场中有一场主场输,第五场赢时,甲队以获胜的概率是综上所述,甲队以获胜的概率是【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以获胜的两种情况;易错点之三是是否能够准确计算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),a的取值范围为.【解析】(1)先连结,由为等边三角形,得到,,;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点存在,当且仅当,,,根据三个式子联立,结合题中条件,即可求出结果.【详解】(1)连结,由等边三角形可知:在中,,,,于是,故椭圆C的离心率为;(2)由题意可知,满足条件的点存在,当且仅当,,,即①②③由②③以及得,又由①知,故;由②③得,所以,从而,故;当,时,存在满足条件的点.故,a的取值范围为.【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.18、(1)(2)cm【解析】(1)设抛物线的标准方程为,由题意可得抛物线过点,将此点代入方程中可求出的值,从而可得抛物线方程,(2)设此时的口径长为,则抛物线过点,代入抛物线方程可求出的值,从而可求得答案【小问1详解】由题意,建立如图所示的平面直角坐标系,设抛物线的标准方程为,因为顶点深度4,口径长为12,所以该抛物线过点,所以,得,所以抛物线方程为;【小问2详解】若将磨具的顶点深度减少,设此时的口径长为,则可得,得,所以此时该磨具的口径长19、.【解析】计算命题p:;命题;根据p或q为真,¬q为真得到真假,计算得到答案.【详解】若方程的曲线是焦点在轴上的双曲线,则满足,即,即,即若方程无实根,则判别式,即,得,即,即若为真,则为假,同时若或为真,则为真命题,即,得,即实数的取值范围是.【点睛】本题考查了命题的真假计算参数范围,根据条件判断出真假是解题的关键.20、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直关系得过直线l的斜率,由点斜式化简即可求解l的一般式方程;(2)结合勾股定理建立弦心距(由点到直线距离公式求解),半弦长,圆半径的基本关系,解出,即可求解圆C的方程【小问1详解】因为直线l与直线4x﹣3y+t=0垂直,所以直线l的斜率为,故直线l的方程为,即3x+4y+5=0,因此直线l的一般式方程为3x+4y+5=0;【小问2详解】圆C:x2+y2=m的圆心为(0,0),半径为,圆心(0,0)到直线l的距离为,则半径满足m=42+12=17,即m=17,所以圆C:x2+y2=1721、【解析】设出直线m的方程,利用方程组联立、一元二次方程根的判别式求出与直线m平行的抛物线的切线方程,结合平行线间距离公式进行求解即可.【详解】抛物线的焦点坐标为:,设直线m为,设为与抛物线相切,联立直线与抛物线方程,化简整理可得,,则,解得,且,故两平行线间的距离,解得,故所求的准线方程为22、(1);(2);(3).【解析】(1)设,连接、,证明出平面,推导出为的中点,然后以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,利用空间向量法可求得二面角的余弦值;(2)利用空间向量法可求得与所成角的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论