版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
牡丹江市重点中学2026届高一数学第一学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.主视图为矩形的几何体是()A. B.C. D.2.已知函数,若对任意,总存在,使得不等式都恒成立,则实数的取值范围为()A. B.C. D.3.已知两直线,.若,则的值为A.0 B.0或4C.-1或 D.4.若偶函数在区间上是减函数,是锐角三角形的两个内角,且,则下列不等式中正确的是()A. B.C. D.5.已知函数,,的图象的3个交点可以构成一个等腰直角三角形,则的最小值为()A. B.C. D.6.已知集合,则()A.0或1 B.C. D.或7.已知定义域为R的偶函数在上是减函数,且,则不等式的解集为()A. B.C. D.8.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°9.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p310.已知定义在上的函数满足:①的图像关于直线对称;②对任意的,,当时,不等式成立.令,,,则下列不等式成立的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若命题“,”为假命题,则实数的取值范围为______.12.已知角的终边过点,求_________________.13.在中,已知,则______.14.若函数在区间内有最值,则的取值范围为_______15.等比数列中,,则___________16.经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该简车抽象为圆O,筒车上的盛水桶抽象为圆O上的点P,已知圆O的半径为,圆心O距离水面,且当圆O上点P从水中浮现时(图中点)开始计算时间(1)根据如图所示的直角坐标系,将点P到水面的距离h(单位:m,在水面下,h为负数)表示为时间t(单位:s)的函数,并求时,点P到水面的距离;(2)在点P从开始转动的一圈内,点P到水面的距离不低于的时间有多长?18.已知全集,集合,集合(1)求集合及;(2)若集合,且,求实数的取值范围19.已知函数(1)求的最小正周期;(2)当时,求的单调区间;(3)在(2)的件下,求的最小值,以及取得最小值时相应自变量x的取值.20.设a∈R,是定义在R上的奇函数,且.(1)试求的反函数的解析式及的定义域;(2)设,若时,恒成立,求实数k的取值范围.21.计算(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据几何体的特征,由主视图的定义,逐项判断,即可得出结果.【详解】A选项,圆柱的主视图为矩形,故A正确;B选项,圆锥的主视图为等腰三角形,故B错;C选项,棱锥的主视图为三角形,故C错;D选项,球的主视图为圆,故D错.故选:A.【点睛】本题主要考查简单几何体的正视图,属于基础题型.2、D【解析】探讨函数性质,求出最大值,再借助关于a函数单调性列式计算作答.【详解】依题意,,则是上的奇函数,当时,,在上单调递增,在上单调递减,则,由奇函数性质知,函数在上的最大值是,依题意,存在,,令,显然是一次型函数,因此,或,解得或,所以实数的取值范围为.故选:D3、B【解析】分两种情况:一、斜率不存在,即此时满足题意;二、斜率存在即,此时两斜率分别为,,因为两直线平行,所以,解得或(舍),故选B考点:由两直线斜率判断两直线平行4、C【解析】根据,可得,根据的单调性,即可求得结果.【详解】因为是锐角三角形的两个内角,故可得,即,又因为,故可得;是偶函数,且在单调递减,故可得在单调递增,故.故选:C.【点睛】本题考查由函数奇偶性判断函数的单调性,涉及余弦函数的单调性,属综合中档题.5、C【解析】先根据函数值相等求出,可得,由此可知等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,由此可知,可得,据此即可求出结果.【详解】令和相等可得,即;此时,即等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,所以,即,当时,的最小值,最小值为故选:C6、D【解析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果.【详解】因为为单元素集,所以方程只有一个解,且解为,当时,,此时;当时,,即,此时,故选:D.7、A【解析】根据偶函数的性质可得在上是增函数,且.由此将不等式转化为来求解得不等式的解集.【详解】因为偶函数在上是减函数,所以在上是增函数,由题意知:不等式等价于,即,即或,解得:或.故选:A【点睛】本小题主要考查函数的奇偶性以及单调性,考查对数不等式的解法,属于中档题.8、A【解析】由诱导公式计算出函数值后判断详解】,,,故选:A9、A【解析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【详解】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.10、D【解析】根据题意,分析可得的图象关于轴对称,结合函数的单调性定义分析可得函数在,上为增函数;结合函数的奇偶性可得在区间,上为减函数,由对数的运算性质可得,据此分析可得答案【详解】解:根据题意,函数的图象关于直线对称,则的图象关于轴对称,即函数为偶函数,又由对任意的,,,当时,不等式成立,则函数在,上为增函数,又由为偶函数,则在区间,上为减函数,,,,因为,则有,故有.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】命题为假命题时,二次方程无实数解,据此可求a的范围.【详解】若命题“,”为假命题,则一元二次方程无实数解,∴.∴a的取值范围是:.故答案为:.12、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.13、11【解析】由.14、【解析】当函数取得最值时有,由此求得的值,根据列不等式组,解不等式组求得的取值范围(含有),对赋值求得的具体范围.【详解】由于函数取最值时,,,即,又因为在区间内有最值.所以时,有解,所以,即,由得,当时,,当时,又,,所以的范围为.【点睛】本小题主要考查三角函数最值的求法,考查不等式的解法,考查赋值法,属于中档题.15、【解析】等比数列中,由可得.等比数列,构成以为首项,为公比的等比数列,所以【点睛】若数列为等比数列,则构成等比数列16、x+y-5=0或2x-3y=0【解析】当直线经过原点时,在两坐标轴上的截距相等,可得其方程为2x﹣3y=0;当直线不经过原点时,可得它的斜率为﹣1,由此设出直线方程并代入P的坐标,可求出其方程为x+y﹣5=0,最后加以综合即可得到答案【详解】当直线经过原点时,设方程为y=kx,∵直线经过点P(3,2),∴2=3k,解之得k,此时的直线方程为yx,即2x﹣3y=0;当直线不经过原点时,设方程为x+y+c=0,将点P(3,2)代入,得3+2+c=0,解之得c=﹣5,此时的直线方程为x+y﹣5=0综上所述,满足条件的直线方程为:2x﹣3y=0或x+y﹣5=0故答案为:x+y-5=0或2x-3y=0【点睛】本题给出直线经过定点且在两个轴上的截距相等,求直线的方程.着重考查了直线的基本量与基本形式等知识,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),m(2)4s【解析】(1)根据题意先求出筒车转动的角速度,从而求出h关于时间t的函数,和时的函数值;(2)先确定定义域,再求解不等式,得到,从而求出答案.【小问1详解】筒车按逆时针方向匀速转动.每分钟转动5圈,故筒车每秒转动的角速度为,故,当时,,故点P到水面的距离为m【小问2详解】点P从开始转动的一圈,所用时间,令,其中,解得:,则,故点P到水面的距离不低于的时间为4s.18、(1),;(2)【解析】(1)解一元一次不等式求集合A,再应用集合的交并补运算求及.(2)由集合的包含关系可得,结合已知即可得的取值范围【小问1详解】由得:,所以,则,由,所以,【小问2详解】因为且,所以,解得所以的取值范围是19、(1)(2)的单调递增区间为,单调递减区间为(3)当时,的最小值为0【解析】(1)根据周期公式计算即可.(2)求出单调区间,然后与所给的范围取交集即可.(3)根据(2)的结论,对与进行比较即可.【小问1详解】,,故的最小正周期为.【小问2详解】先求出增区间,即:令解得所以在区间上,当时,函数单调递增,当时,函数单调递减;所以的单调递增区间为,单调递减区间为【小问3详解】由(2)所得到的单调性可得,,所以在时取得最小值0.20、(1);(2).【解析】(1)根据函数的奇偶性求出的值,结合反函数的概念求出,利用指数函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026中豫航空集团招聘面试题及答案
- 2026浙江交通投资集团招聘面试题及答案
- 招聘专员面试题集及答题策略
- 2026内蒙古地质矿产集团招聘面试题及答案
- 2026年一级注册建筑师之建筑经济、施工与设计业务管理考试题库300道及答案【真题汇编】
- 土木工程师面试题及工程实例分析含答案
- 2025青海海南州同德县人民医院招聘消防专职人员1人考试笔试备考试题及答案解析
- 2024年桂林生命与健康职业技术学院马克思主义基本原理概论期末考试题附答案
- 2026年高校教师资格证之高等教育学考试题库附完整答案(全优)
- 2024年武汉电力职业技术学院辅导员考试笔试真题汇编附答案
- 骨盆骨折患者麻醉管理要点
- 2025贵阳人文科技学院教师招聘考试试题
- 高职院校产教融合共同体建设国内外研究动态及启示
- T/CWAN 0068-2023铜铝复合板
- 儿童寓言故事-乌鸦喝水
- 弱电系统维护中的安全和文明措施
- 紧急状态下护理人力资源调配
- 安全生产文明施工评价报告
- 眼科滴眼药水课件
- 2024-2025学年青海省西宁市七年级(上)期末英语试卷(含答案)
- 2025中级消防设施操作员作业考试题及答案(1000题)
评论
0/150
提交评论