版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省忻州市第二中学高一数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如下图所示,在正方体中,下列结论正确的是A.直线与直线所成的角是 B.直线与平面所成的角是C.二面角的大小是 D.直线与平面所成的角是2.下列各题中,p是q的充要条件的是()A.p:,q:B.p:,q:C.p:四边形是正方形,q:四边形的对角线互相垂直且平分D.p:两个三角形相似,q:两个三角形三边成比例3.若,,,则A B.C. D.4.若在是减函数,则的最大值是A. B.C. D.5.下列函数中为奇函数,且在定义域上为增函数的有()A. B.C. D.6.已知集合,,若,则A. B.C. D.7.如果,,那么直线不通过A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知函数的最小正周期,且是函数的一条对称轴,是函数的一个对称中心,则函数在上的取值范围是()A. B.C. D.9.已知集合,则中元素的个数为A.1 B.2C.3 D.410.设,,,则a、b、c的大小关系是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,,,则的最小值为______.12.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.13.已知函数是定义在上的奇函数,当时,为常数),则=_________.14.设函数=,则=15.函数的反函数为___________.16.设为向量的夹角,且,,则的取值范围是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在直三棱柱中,底面为等边三角形,.(Ⅰ)求三棱锥的体积;(Ⅱ)在线段上寻找一点,使得,请说明作法和理由.18.义域为的函数满足:对任意实数x,y均有,且,又当时,.(1)求的值,并证明:当时,;(2)若不等式对任意恒成立,求实数的取值范围.19.已知函数,且.(1)求实数及的值;(2)判断函数的奇偶性并证明.20.已知函数(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.21.已知函数,两相邻对称中心之间的距离为(1)求函数的最小正周期和的解析式.(2)求函数的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】选项,连接,,因为,所以直线与直线所成的角为,故错;选项,因为平面,故为直线与平面所成的角,根据题意;选项,因为平面,所以,故二面角的平面角为,故错;用排除法,选故选:D2、D【解析】根据充分条件、必要条件的判定方法,逐项判定,即可求解.【详解】对于A中,当时,满足,所以充分性不成立,反之:当时,可得,所以必要性成立,所以是的必要不充分条件,不符合题意;对于B中,当时,可得,即充分性成立;反之:当时,可得,即必要性不成立,所以是的充分不必要条件,不符合题意;对于C中,若四边形是正方形,可得四边形的对角线互相垂直且平分,即充分性成立;反之:若四边形的对角线互相垂直且平分,但四边形不一定是正方形,即必要性不成立,所以是充分不必要条件,不符合题意;对于D中,若两个三角形相似,可得两个三角形三边成比例,即充分性成立;反之:若两个三角形三边成比例,可得两个三角形相似,即必要性成立,所以是的充分必要条件,符合题意.故选:D.3、B【解析】利用指数函数与对数函数的单调性分别求出的范围,即可得结果.【详解】根据指数函数的单调性可得,根据对数函数的单调性可得,则,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.4、A【解析】因为,所以由得因此,从而的最大值为,故选:A.5、C【解析】根据函数的奇偶性,可排除A,B;说明的奇偶性以及单调性,可判断C;根据的单调性,判断D.【详解】函数为非奇非偶函数,故A错;函数为偶函数,故B错;函数,满足,故是奇函数,在定义域R上,是单调递增函数,故C正确;函数在上是增函数,在上是增函数,在定义域上不单调,故D错,故选:C6、A【解析】利用两个集合的交集所包含的元素,求得的值,进而求得.【详解】由于,故,所以,故,故选A.【点睛】本小题主要考查两个集合交集元素的特征,考查两个集合的并集的概念,属于基础题.7、A【解析】截距,因此直线不通过第一象限,选A8、B【解析】依题意求出的解析式,再根据x的取值范围,求出的范围,再根据正弦函数的性质计算可得.【详解】函数的最小正周期,∴,解得:,由于是函数的一条对称轴,且为的一个对称中心,∴,(),则,(),则,又∵,,由于,∴,故,∵,∴,∴,∴.故选:B9、A【解析】利用交集定义先求出A∩B,由此能求出A∩B中元素的个数【详解】∵集合∴A∩B={3},∴A∩B中元素的个数为1故选A【点睛】本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意交集定义的合理运用10、D【解析】根据指数函数与对数函数性质知,,,可比较大小,【详解】解:,,;故选D【点睛】在比较幂或对数大小时,一般利用指数函数或对数函数的单调性,有时还需要借助中间值与中间值比较大小,如0,1等等二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用基本不等式求出即可.【详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【点睛】本题考查了基本不等式的应用,属于基础题.12、【解析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【点睛】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.13、【解析】先由函数奇偶性,结合题意求出,计算出,即可得出结果.【详解】因为为定义在上的奇函数,当时,,则,解得,则,所以,因此.故答案为:.14、【解析】由题意得,∴答案:15、【解析】由题设可得,即可得反函数.【详解】由,可得,∴反函数为.故答案为:.16、【解析】将平方可得cosθ,利用对勾函数性质可得最小值,从而得解.【详解】两个不共线的向量,的夹角为θ,且,可得:,可得cosθ那么cosθ的取值范围:故答案为【点睛】本题考查向量的数量积的应用,向量夹角的求法,考查计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】(1)取BC中点E连结AE,三棱锥C1﹣CB1A的体积,由此能求出结果.(2)在矩形BB1C1C中,连结EC1,推导出Rt△C1CE∽Rt△CBF,从而CF⊥EC1,再求出AE⊥CF,由此得到在BB1上取F,使得,连结CF,CF即为所求直线解析:(1)取中点连结.在等边三角形中,,又∵在直三棱柱中,侧面面,面面,∴面,∴为三棱锥的高,又∵,∴,又∵底面为直角三角形,∴,∴三棱锥的体积(2)作法:在上取,使得,连结,即为所求直线.证明:如图,在矩形中,连结,∵,,∴,∴,∴,又∵,∴,∴,又∵面,而面,∴,又∵,∴面,又∵面,∴.点睛:这个题目考查的是立体几何中椎体体积的求法,异面直线垂直的证法;对于异面直线的问题,一般是平移到同一平面,再求线线角问题;或者通过证明线面垂直得到线线垂直;对于棱锥体积,可以等体积转化到底面积和高好求的椎体中18、(1)答案见解析;(2)或.【解析】(1)利用赋值法计算可得,设,则,利用拆项:即可证得:当时,;(2)结合(1)的结论可证得是增函数,据此脱去f符号,原问题转化为在上恒成立,分离参数有:恒成立,结合基本不等式的结论可得实数的取值范围是或.试题解析:(1)令,得,令,得,令,得,设,则,因为,所以;(2)设,
,
因为所以,所以为增函数,所以,
即,上式等价于对任意恒成立,因为,所以上式等价于对任意恒成立,设,(时取等),所以,解得或.19、(1),;(2)是奇函数,证明见解析.【解析】(1)根据,代入计算可得的值,即可求出函数的解析式,再代入计算可得;(2)首先求出函数的定义域,再计算即可判断;【详解】解:(1)因为,且.所以解得,所以所以(2)由(1)可得.因为函数的定义域为,关于原点对称且,所以是奇函数.20、(1)的最大值,(2)【解析】(1)根据的范围可得的范围,可得的最大值及取得最大值时自变量的集合;(2)由图象平移规律可得,结合的范围和正弦曲线的单调性可得答案.【小问1详解】因为,所以,所以,当即时的最大值,所以取得最大值时自变量的集合是.【小问2详解】因为把曲线向左
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年初级经济师之初级建筑与房地产经济考试题库300道含答案(b卷)
- 2026年初级经济师之初级建筑与房地产经济考试题库300道带答案
- 2026年机械员考试题库附参考答案(满分必刷)
- 2025年一级注册建筑师考试题库500道含答案【预热题】
- 2026年濮阳科技职业学院单招职业适应性考试模拟测试卷附答案解析
- 2025年合肥理工学院辅导员考试参考题库附答案
- 项目中其他岗位对测试需求的管理办法
- 2026年初级银行从业资格之初级个人贷款考试题库【名师系列】
- 2026年材料员考试备考题库【培优b卷】
- 程序员总监面试题及答案
- 2025年数字生态指数报告-北京大学
- 2025年广东省综合评标专家库考试题库(二)
- TE1002常见终端产品配置维护-ZXV10 XT802
- 形象设计行业市场分析与发展建议
- 管理工作者应对突发事件
- 工艺部门技能提升培训计划
- 北京市昌平区2024-2025学年三年级上学期期末数学试题
- 口腔诊所前台接待流程与话术模板
- 15万吨电解铝工程施工组织设计
- 超精密加工技术期末考试
- 犍为经开区马边飞地化工园区污水处理厂环评报告
评论
0/150
提交评论