版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省绵阳市江油中学高一上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了给地球减负,提高资源利用率,垃圾分类在全国渐成风尚,假设2021年两市全年用于垃圾分类的资金均为万元.在此基础上,市每年投入的资金比上一年增长20%,市每年投入的资金比上一年增长50%,则市用于垃圾分类的资金开始超过市的两倍的年份是()(参考数据:)A.2022年 B.2023年C.2024年 D.2026届2.设函数,则的奇偶性A.与有关,且与有关 B.与有关,但与无关C.与无关,且与无关 D.与无关,但与有关3.已知第二象限角的终边上有异于原点的两点,,且,若,则的最小值为()A. B.3C. D.44.设,,,则a,b,c的大小关系为()A. B.C. D.5.化简的结果是()A. B.1C. D.26.将函数的图象向左平移个单位长度得到函数的图象,下列说法正确的是()A.是奇函数 B.的周期是C.的图象关于直线对称 D.的图象关于点对称7.已知函数的图象关于直线对称,且,则的最小值为()A. B.C. D.8.在中,如果,,,则此三角形有()A.无解 B.一解C.两解 D.无穷多解9.若,,,则A B.C. D.10.已知函数则函数的零点个数为.A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数是奇函数,则__________.12.已知集合,集合,则________13.设为向量的夹角,且,,则的取值范围是_____.14.函数的图像恒过定点___________15.已知是偶函数,则实数a的值为___________.16.定义在R上的奇函数f(x)周期为2,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)判断在区间上的单调性,并用定义证明;(2)求在区间上的值域18.(1)化简与求值:lg5+lg2++21n(π-2)0:(2)已知tanα=3.求的值.19.已知二次函数满足,且求的解析式;设,若存在实数a、b使得,求a的取值范围;若对任意,都有恒成立,求实数t取值范围20.已知为第四象限角,且,求下列各式的值(1);(2)21.在直角坐标平面内,角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,分别求sinα、cosα、tanα的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设经过年后,市投入资金为万元,市投入资金为万元,即可表示出、,由题意可得,利用对数的运算性质解出的取值范围即可【详解】解:设经过年后,市投入资金为万元,则,市投入资金为万元,则由题意可得,即,即,即,即所以,所以,即2026届该市用于垃圾分类的资金开始超过市的两倍;故选:D2、D【解析】因为当时,函数,为偶函数;当时,函数,为奇函数所以的奇偶性与无关,但与有关.选D3、B【解析】根据,得到,从而得到,进而得到,再利用“1”的代换以及基本不等式求解.【详解】解:因为,所以,又第二象限角的终边上有异于原点的两点,,所以,则,因为,所以,所以,当且仅当,即时,等号成立,故选:B4、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A5、B【解析】利用三角函数的诱导公式化简求解即可.【详解】原式.故选:B6、D【解析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【详解】由题意可得,对于A,函数是偶函数,A错误:对于B,函数最小周期是,B错误;对于C,由,则直线不是函数图象的对称轴,C错误;对于D,由,则是函数图象的一个对称中心,D正确.故选:D.7、D【解析】由辅助角公式可得,由函数关于直线对称,可得,可取.从而可得,由此结合,可得一个最大值一个最小值,从而可得结果.【详解】,,函数关于直线对称,,即,,故可取故,,即可得:,故可令,,,,即,,其中,,,故选D【点睛】本题主要考查辅助角公式的应用、三角函数的最值、三角函数的对称性,转化与划归思想的应用,属于难题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.8、A【解析】利用余弦定理,结合一元二次方程根的判别式进行求解即可.【详解】由余弦定理可知:,该一元二次方程根的判别式,所以该一元二次方程没有实数根,故选:A9、B【解析】利用指数函数与对数函数的单调性分别求出的范围,即可得结果.【详解】根据指数函数的单调性可得,根据对数函数的单调性可得,则,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.10、B【解析】令,得,令,由,得或,作出函数的图象,结合函数的图象,即可求解【详解】由题意,令,得,令,由,得或,作出函数的图象,如图所示,结合函数的图象可知,有个解,有个解,故的零点个数为,故选B.【点睛】本题主要考查了函数的零点问题,其中令,由,得到或,作出函数的图象,结合函数的图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意,得到,即可求解.【详解】因为是奇函数,可得.故答案为:.12、【解析】由交集定义计算【详解】由题意故答案为:13、【解析】将平方可得cosθ,利用对勾函数性质可得最小值,从而得解.【详解】两个不共线的向量,的夹角为θ,且,可得:,可得cosθ那么cosθ的取值范围:故答案为【点睛】本题考查向量的数量积的应用,向量夹角的求法,考查计算能力,属于中档题.14、【解析】根据指数函数过定点,结合函数图像平移变换,即可得过的定点.【详解】因为指数函数(,且)过定点是将向左平移2个单位得到所以过定点.故答案为:.15、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:16、0【解析】以周期函数和奇函数的性质去求解即可.【详解】因为是R上的奇函数,所以,又周期为2,所以,又,所以,故,则对任意,故故答案为:0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在区间上单调递增,证明见解析(2)【解析】(1)利用定义法,设出,通过做差比较的大小,即可证明;(2)根据第(1)问得到在区间上的单调性,在区间直接赋值即可求解值域.【小问1详解】在区间上单调递增,证明如下:,且,有因为,且,所以,于是,即故在区间上单调递增【小问2详解】由第(1)问结论可知,因为在区间上单调递增,,所以在区间上的值域为18、(1);(2)-2【解析】(1)利用根式和对数运算求解;(2)利用诱导公式和商数关系求解.【详解】解:(1),,,;(2)原式,,因为,所以原式.19、(1);(2)或;(3).【解析】利用待定系数法求出二次函数的解析式;求出函数的值域,再由题意得出关于a的不等式,求出解集即可;由题意知对任意,都有,讨论t的取值,解不等式求出满足条件的t的取值范围【详解】解:设,因为,所以;;;;;解得:;;函数,若存在实数a、b使得,则,即,,解得或,即a的取值范围是或;由题意知,若对任意,都有恒成立,即,故有,由,;当时,在上为增函数,,解得,所以;当,即时,在区间上单调减函数,,解得,所以;当,即时,,若,则,解得;若,则,解得,所以,应取;综上所述,实数t的取值范围是【点睛】本题考查了不等式恒成立问题,也考查了分类讨论思想与转化思想,属于难题20、(1)(2)【解析】(1)先根据同角三角函数的关系求解可得,再根据同角三角函数的关系化简即可(2)先根据,再根据求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年初级经济师之初级经济师财政税收考试题库300道及答案(夺冠系列)
- 2026江西长天集团招聘面试题及答案
- 保险业销售部经理的面试题及答案
- 2026年长春健康职业学院单招职业技能考试题库附答案解析
- 2026年宁夏银川市单招职业适应性测试必刷测试卷含答案
- 电商行业市场部经理面试题目与答案
- 2026年设备监理师考试题库500道及完整答案【名校卷】
- 2026年(通讯维修工)理论知识考试题库附答案【研优卷】
- 2026年高校教师资格证之高等教育法规考试题库及完整答案1套
- 2024年曲松县幼儿园教师招教考试备考题库含答案
- 钢结构施工临时支撑方案
- 钢结构楼梯安装施工方案
- 趣味运动会元旦活动方案
- 海康网络监控系统的技术方案
- 村书记就职发言稿
- 2025北京市通州区不动产登记中心协办员招聘1人模拟试卷及答案详解(典优)
- 木工加工区施工方案
- 农村劳务经纪人培训课件
- 邮储银行二级支行长面试题库及答案
- 数据中心制冷机组维护标准
- 合成气梭菌发酵乙醇的机制、现状与前景探析
评论
0/150
提交评论