2026届新疆昌吉州教育共同体高一上数学期末联考试题含解析_第1页
2026届新疆昌吉州教育共同体高一上数学期末联考试题含解析_第2页
2026届新疆昌吉州教育共同体高一上数学期末联考试题含解析_第3页
2026届新疆昌吉州教育共同体高一上数学期末联考试题含解析_第4页
2026届新疆昌吉州教育共同体高一上数学期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届新疆昌吉州教育共同体高一上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数y=的单调增区间为A.(-,) B.(,+)C.(-1,] D.[,4)2.函数y=的定义域是()A. B.C. D.3.已知三个顶点的坐标分别为,,,则外接圆的标准方程为()A. B.C. D.4.若,则的可能值为()A.0 B.0,1C.0,2 D.0,1,25.已知函数是幂函数,且其图象与两坐标轴都没有交点,则实数A. B.2C.3 D.2或6.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-227.如图,在正四棱柱中,,点是平面内的一个动点,则三棱锥的正视图和俯视图的面积之比的最大值为A B.C. D.8.函数在区间的图象大致是()A. B.C. D.9.下列函数中,既是偶函数,又在区间上单调递增的函数为A. B.C. D.10.已知集合,则A. B.C.( D.)二、填空题:本大题共6小题,每小题5分,共30分。11.若则______12.已知函数,x0R,使得,则a=_________.13.设,则________14.已知,,则________.15.命题“,使”是真命题,则的取值范围是________16.函数f(x)=+的定义域为____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数满足,且.(1)求a和函数的解析式;(2)判断在其定义域的单调性.18.有一圆与直线相切于点,且经过点,求此圆的方程19.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为,首次改良后所排放的废气中含有的污染物数量为.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,则第次改良后所排放的废气中的污染物数量,可由函数模型给出,其中是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取)20.已知函数是定义在上的偶函数,且当时,,函数在轴左侧的图象如图所示(1)求函数的解析式;(2)若关于的方程有个不相等的实数根,求实数的取值范围21.在平面直角坐标系中,已知角的页点为原点,始边为轴的非负半轴,终边经过点.(1)求的值;(2)求旳值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】令,,()在为增函数,在上是增函数,在上是减函数;根据复合函数单调性判断方法“同增异减”可知,函数y=的单调增区间为选C.【点睛】有关复合函数的单调性要求根据“同增异减”的法则去判断,但在研究函数的单调性时,务必要注意函数的定义域,特别是含参数的函数单调性问题,注意对参数进行讨论,指、对数问题针对底数a讨论两种情况,分0<a<1和a>1两种情况,既要保证函数的单调性,又要保证真数大于零.2、A【解析】根据偶次方根的被开方数为非负数,对数的真数大于零列不等式,由此求得函数的定义域.【详解】依题意,所以的定义域为.故选:A3、C【解析】先判断出是直角三角形,直接求出圆心和半径,即可求解.【详解】因为三个顶点的坐标分别为,,,所以,所以,所以是直角三角形,所以的外接圆是以线段为直径的圆,所以圆心坐标为,半径故所求圆的标准方程为故选:C4、C【解析】根据,分,,讨论求解.【详解】因为,当时,集合为,不成立;当时,集合为,成立;当时,则(舍去)或,当时,集合为故选:C5、A【解析】根据幂函数的定义,求出m的值,代入判断即可【详解】函数是幂函数,,解得:或,时,,其图象与两坐标轴有交点不合题意,时,,其图象与两坐标轴都没有交点,符合题意,故,故选A【点睛】本题考查了幂函数的定义,考查常见函数的性质,是一道常规题6、B【解析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【点睛】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.7、B【解析】由题意可知,P在正视图中的射影是在C1D1上,AB在正视图中,在平面CDD1C1上的射影是CD,P的射影到CD的距离是AA1=2,所以三棱锥P﹣ABC的正视图的面积为三棱锥P﹣ABC的俯视图的面积的最小值为,所以三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为,故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.8、C【解析】判断函数非奇非偶函数,排除选项A、B,在计算时的函数值可排除选项D,进而可得正确选项.【详解】因为,且,所以既不是奇函数也不是偶函数,排除选项A、B,因为,排除选项D,故选:C【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.9、C【解析】选项A中,函数的定义域为,不合题意,故A不正确;选项B中,函数的定义域为,无奇偶性,故B不正确;选项C中,函数为偶函数,且当x>0时,,为增函数,故C正确;选项D中,函数为偶函数,但在不是增函数,故D不正确选C10、C【解析】因为所以,故选.考点:1.集合的基本运算;2.简单不等式的解法.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】12、【解析】由基本不等式及二次函数的性质可得,结合等号成立的条件可得,即可得解.【详解】由题意,,因为,当且仅当时,等号成立;,当且仅当时,等号成立;所以,又x0R,使得,所以,所以.故答案为:.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方13、【解析】根据自变量取值判断使用哪一段解析式求解,分别代入求解即可【详解】解:因为,所以,所以故答案为:114、【解析】根据已知条件求得的值,由此求得的值.【详解】依题意,两边平方得,而,所以,所以.由解得,所以.故答案为:【点睛】知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.15、【解析】可根据题意得出“,恒成立”,然后根据即可得出结果.【详解】因为命题“,使”是真命题,所以,恒成立,即恒成立,因为当时,,所以,的取值范围是,故答案为:.16、【解析】根据题意,结合限制条件,解指数不等式,即可求解.【详解】根据题意,由,解得且,因此定义域为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2)在其定义域为单调增函数.【解析】(1)由,可得,再由,可求出的值,从而可得函数的解析式;(2)利用函数的单调性定义进行判断即可【详解】解:(1)由,得,,得;所以;(2)该函数的定义域为,令,所以,所以,因为,,所以,所以在其定义域为单调增函数.18、x2+y2-10x-9y+39=0【解析】法一:设出圆的方程,代入B点坐标,计算参数,即可.法二:设出圆的方程,结合题意,建立方程,计算参数,即可.法三:设出圆的一般方程,代入A,B坐标,建立方程,计算参数,即可.法四:计算CA直线方程,计算BP方程,计算点P坐标,计算半径和圆心坐标,建立圆方程,即可【详解】法一:由题意可设所求的方程为,又因为此圆过点,将坐标代入圆的方程求得,所以所求圆的方程为.法二:设圆的方程为,则圆心为,由,,,解得,所以所求圆的方程为.法三:设圆的方程为,由,,在圆上,得,解得,所以所求圆的方程为.法四:设圆心为,则,又设与圆的另一交点为,则的方程为,即.又因为,所以,所以直线的方程为.解方程组,得,所以所以圆心为的中点,半径为.所以所求圆的方程为.【点睛】考查了圆方程的计算方法,关键在于结合题意建立方程组,计算参数,即可,难度中等19、(1);(2)至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【解析】(1)由题设可得方程,求出,进而写出函数模型;(2)由(1)所得模型,结合题设,并应用对数的运算性质求解不等式,即可知要使该企业所排放的废气中含有的污染物数量达标至少要改良的次数.【详解】(1)由题意得:,,∴当时,,即,解得,∴,故改良后所排放的废气中含有的污染物数量的函数模型为.(2)由题意得,,整理得:,即,两边同时取常用对数,得:,整理得:,将代入,得,又,∴,综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.20、(1)(2)【解析】(1)利用可求时的解析式,当时,利用奇偶性可求得时的的解析式,由此可得结果;(2)作出图象,将问题转化为与有个交点,数形结合可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论