版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏宿迁市高一数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则()A. B.aC.2a D.4a2.已知集合,,有以下结论:①;②;③.其中错误的是()A.①③ B.②③C.①② D.①②③3.如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它对应的方程为(其中记为不超过的最大整数),且过点,若葫芦曲线上一点到轴的距离为,则点到轴的距离为()A. B.C. D.4.函数的图像大致为()A. B.C. D.5.已知集合,集合B满足,则满足条件的集合B有()个A.2 B.3C.4 D.16.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件7.已知,,则“使得”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.已知平面α和直线l,则α内至少有一条直线与l()A.异面 B.相交C.平行 D.垂直9.为了给地球减负,提高资源利用率,垃圾分类在全国渐成风尚,假设2021年两市全年用于垃圾分类的资金均为万元.在此基础上,市每年投入的资金比上一年增长20%,市每年投入的资金比上一年增长50%,则市用于垃圾分类的资金开始超过市的两倍的年份是()(参考数据:)A.2022年 B.2023年C.2024年 D.2026届10.设,则a,b,c的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点在角的终边上,则___________;12.函数的单调递减区间为___________.13.请写出一个同时满足下列两个条件的函数:____________.(1),若则(2)14.直线与函数的图象相交,若自左至右的三个相邻交点依次为、、,且满足,则实数________15.如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________16.命题“,”的否定是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是上的偶函数,当时,.(1)用单调性定义证明函数在上单调递增;(2)求当时,函数的解析式.18.在平面直角坐标系中,角的顶点与坐标原点重合,始边与轴的非负半轴重合,终边与单位圆相交于点A,已知点A的纵坐标为.(1)求的值;(2)求的值.19.已知函数,.(1)求函数图象的对称轴的方程;(2)当时,求函数的值域;(3)设,存在集合,当且仅当实数,且在时,不等式恒成立.若在(2)的条件下,恒有(其中),求实数的取值范围.20.已知集合,(1)时,求及;(2)若时,求实数a的取值范围21.已知圆的方程为,是坐标原点.直线与圆交于两点(1)求的取值范围;(2)过点作圆的切线,求切线所在直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用对数的运算可求解.【详解】,故选:A2、C【解析】解出不等式,得到集合,然后逐一判断即可.【详解】由可得所以,故①错;,②错;,③对,故选:C3、C【解析】先根据点在曲线上求出,然后根据即可求得的值【详解】点在曲线上,可得:化简可得:可得:()解得:()若葫芦曲线上一点到轴的距离为,则等价于则有:可得:故选:C4、A【解析】先判断函数为偶函数排除;再根据当时,,排除得到答案.【详解】,偶函数,排除;当时,,排除故选【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.5、C【解析】写出满足题意的集合B,即得解.【详解】因为集合,集合B满足,所以集合B={3},{1,3},{2,3},{1,2,3}.故选:C【点睛】本题主要考查集合的并集运算,意在考查学生对这些知识的理解掌握水平.6、A【解析】由与互相推出的情况结合选项判断出答案【详解】,由可以推出,而不能推出则“”是“”的充分而不必要条件故选:A7、C【解析】依据子集的定义进行判断即可解决二者间的逻辑关系.【详解】若使得,则有成立;若,则有使得成立.则“使得”是“”的充要条件故选:C8、D【解析】若直线l∥α,α内至少有一条直线与l垂直,当l与α相交时,α内至少有一条直线与l垂直当l⊂α,α内至少有一条直线与l垂直故选D9、D【解析】设经过年后,市投入资金为万元,市投入资金为万元,即可表示出、,由题意可得,利用对数的运算性质解出的取值范围即可【详解】解:设经过年后,市投入资金为万元,则,市投入资金为万元,则由题意可得,即,即,即,即所以,所以,即2026届该市用于垃圾分类的资金开始超过市的两倍;故选:D10、C【解析】比较a、b、c与0和1的大小即可判断它们之间的大小.【详解】,,,故故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】根据三角函数得定义即可的解.【详解】解:因为点在角的终边上,所以.故答案为:.12、【解析】利用对数型复合函数性质求解即可.【详解】由题知:,解得或.令,则为减函数.所以,为减函数,为增函数,,为增函数,为减函数.所以函数的单调递减区间为.故答案为:13、,答案不唯一【解析】由条件(1),若则.可知函数为R上增函数;由条件(2).可知函数可能为指数型函数.【详解】令,则为R上增函数,满足条件(1).又,故即成立.故答案为:,(,等均满足题意)14、或【解析】设点、、的横坐标依次为、、,由题意可知,根据题意可得出关于、的方程组,分、两种情况讨论,求出的值,即可求得的值.【详解】设点、、的横坐标依次为、、,则,当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,;当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,.综上所述,或.故答案为:或.15、【解析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形,AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2故答案为:2.点睛:求两条异面直线所成角关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.16、,##【解析】根据全称量词命题的否定即可得出结果.【详解】由题意知,命题“”的否定为:.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】(1)利用单调性的定义即证;(2)当时,可得,再利用函数的奇偶性即得.【小问1详解】,且,则,∵,且,∴,∴,即,∴函数在上单调递增;【小问2详解】当时,,∴,又函数是上的偶函数,∴,即当时,.18、(1)(2)【解析】(1)根据点A的纵坐标,可求得点A的横坐标,根据正切函数的定义,即可得答案.(2)利用诱导公式进行化简,结合(1)即可得答案.【小问1详解】因为点A纵坐标为,且点A在第二象限,所以点A的横坐标为,所以;【小问2详解】由诱导公式可得:.19、(1);(2);(3).【解析】(1)利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数的对称性得解;(2)令,换元,化函数为的二次函数,求出,由此可值域;(3)由题意利用分离参数法、换元法、基本不等式先求出集合,根据(2)中范围得出的范围,再由可得的范围【详解】解:(1)令,得所以函数图象的对称轴方程为:(2)由(1)知,,当时,,∴,,即令,则,,由得,∴当时,有最小值,当时,有最大值1,所以当时,函数的值域为(3)当,不等式恒成立,因为时,,,所以,令,则,所以又,当且仅当即时取等号而,所以,即,所以又由(2)知,,当时,,所以,要使恒成立,只须使,故的取值范围是【点睛】关键点点睛:本题考查两角和的正弦公式,三角函数的对称性,换元法求三角函数的值域,考查不等式恒成立问题,在同时出现和的函数中常常设换元转化为二次函数,再结合二次函数性质求解.不等式恒成立问题仍然采用分离参数转化为求函数的最值20、(1),(2)【解析】(1)先求出集合,,,然后结合集合的交、并运算求解即可;(2)由,得,然后结合集合的包含关系对B是否为空集进行分讨论,即可求解【小问1详解】∵由,得由题可知∴或∴∴;【小问2详解】∵,∴分两种情况考虑:时,,解得:时,则,解得:所以a取值范围为21、(1);(2)或【解析】(1)直线与圆交于两点,即直线与圆相交,转化成圆心到直线距离小于半径,利用公式解不等式;(2)过某点求圆的切线,分斜率存在和斜率不存在两种情况数形结合分别讨论.【详解】(1)圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Java开发测试与自动化测试框架含答案
- 2025云南昆明市盘龙区教育发展投资有限公司招聘1人笔试考试参考题库及答案解析
- 2025四川爱创科技有限公司安徽分公司招聘客户经理岗位1人考试笔试参考题库附答案解析
- 产品部经理面试题含答案
- 核安全档案数据云直播平台工程师面试题及答案
- 2025安徽合肥市庐江县乡村振兴投资有限公司招聘(第二批)考察考试笔试备考题库及答案解析
- 设计工程师岗面试题及答案
- IPO专员岗位创新思维与问题解决技巧含答案
- 2025安徽蚌埠市中欣国有控股有限公司招聘副总经理2人笔试考试备考题库及答案解析
- 玩具制造业的成本控制专员的面试攻略及答案解析
- 2025年看守所民警述职报告
- 景区接待员工培训课件
- 客源国概况日本
- 学位授予点评估汇报
- 《Stata数据统计分析教程》
- 2024-2025学年广州市越秀区八年级上学期期末语文试卷(含答案)
- 宠物诊疗治疗试卷2025真题
- 媒体市场竞争力分析-洞察及研究
- 口腔科口腔溃疡患者漱口液选择建议
- 精神科抑郁症心理干预培训方案
- 2025年国家开放大学(电大)《外国文学》期末考试复习题库及答案解析
评论
0/150
提交评论