2026届北京市东城区第五中学高二上数学期末学业水平测试模拟试题含解析_第1页
2026届北京市东城区第五中学高二上数学期末学业水平测试模拟试题含解析_第2页
2026届北京市东城区第五中学高二上数学期末学业水平测试模拟试题含解析_第3页
2026届北京市东城区第五中学高二上数学期末学业水平测试模拟试题含解析_第4页
2026届北京市东城区第五中学高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届北京市东城区第五中学高二上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若,是第二象限角,则=()A. B.5C. D.102.连掷一枚均匀的骰子两次,所得向上的点数分别为m,n,记,则下列说法正确的是()A.事件“”的概率为 B.事件“t是奇数”与“”互为对立事件C.事件“”与“”互为互斥事件 D.事件“且”的概率为3.若等比数列满足,,则数列的公比为()A. B.C. D.4.对于实数a,b,c,下列命题中的真命题是()A.若,则 B.,则C.若,,则, D.若,则5.已知点、为椭圆的左、右焦点,若点为椭圆上一动点,则使得的点的个数为()A. B.C. D.不能确定6.已知,且,则实数的值为()A. B.3C.4 D.67.已知椭圆=1(a>b>0)的右焦点为F,椭圆上的A,B两点关于原点对称,|FA|=2|FB|,且·≤a2,则该椭圆离心率的取值范围是()A.(0,] B.(0,]C.,1) D.,1)8.已知为等差数列,且,,则()A. B.C. D.9.直线与圆的位置关系是()A.相交 B.相切C.相离 D.不确定10.直线的倾斜角为A. B.C. D.11.已知直线与平行,则系数()A. B.C. D.12.已知向量,满足条件,则的值为()A.1 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在棱长为2的正方体中,点分别是棱的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是__________14.记为等差数列{}的前n项和,若,,则=_________.15.已知函数,若存在唯一零点,则的取值范围是__________.16.数列的前项和为,则该数列的通项公式___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率是,且过点.直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的面积的最大值;(Ⅲ)设直线,分别与轴交于点,.判断,大小关系,并加以证明.18.(12分)在对某老旧小区污水分流改造时,需要给该小区重新建造一座底面为矩形且容积为324立方米的三级污水处理池(平面图如图所示).已知池的深度为2米,如果池四周围墙的建造单价为400元/平方米,中间两道隔墙的建造单价为248元/平方米,池底的建造单价为80元/平方米,池盖的建造单价为100元/平方米,建造此污水处理池相关人员的劳务费以及其他费用是9000元.(水池所有墙的厚度以及池底池盖的厚度按相关规定执行,计算时忽略不计)(1)现有财政拨款9万元,如果将污水处理池的宽建成9米,那么9万元的拨款是否够用?(2)能否通过合理的设计污水处理池的长和宽,使总费用最低?最低费用为多少万元?19.(12分)已知抛物线的方程为,点,过点的直线交抛物线于,两点(1)是否为定值?若是,求出该定值;若不是,说明理由;(2)若点是直线上的动点,且,求面积的最小值20.(12分)已知圆与直线相切(1)求圆O的标准方程;(2)若线段AB的端点A在圆O上运动,端点B的坐标是,求线段AB的中点M的轨迹方程21.(12分)如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)证明:AC∥平面BEF;(2)求点C到平面BEF的距离22.(10分)如图,在△ABC中,内角A、B、C的对边分别为a、b、c.已知b=3,c=6,,且AD为BC边上的中线,AE为∠BAC的角平分线(1)求及线段BC的长;(2)求△ADE的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先由诱导公式及同角函数关系得到,再根据诱导公式化简,最后由二倍角公式化简求值即可.【详解】∵,∴,∵是第二象限角,∴,∴故选:D2、D【解析】计算出事件“t=12”的概率可判断A;根据对立事件的概念,可判断B;根据互斥事件的概念,可判断C;计算出事件“t>8且mn<32”的概率可判断D;【详解】连掷一枚均匀的骰子两次,所得向上的点数分别为m,n,则共有个基本事件,记t=m+n,则事件“t=12”必须两次都掷出6点,则事件“t=12”的概率为,故A错误;事件“t是奇数”与“m=n”为互斥不对立事件,如事件m=3,n=5,故B错误;事件“t=2”与“t≠3”不是互斥事件,故C错误;事件“t>8且mn<32”有共9个基本事件,故事件“t>8且mn<32”的概率为,故D正确;故选:D3、D【解析】设等比数列的公比为,然后由已知条件列方程组求解即可【详解】设等比数列的公比为,因为,,所以,所以,解得,故选:D4、C【解析】对于选项A,可以举反例判断;对于选项BCD可以利用作差法判断得解.【详解】解:A.若,则不一定成立.如:.所以该选项错误;B.,所以,所以该选项错误;C.,所以该选项正确;D.,所以该选项错误.故选:C5、B【解析】利用余弦定理结合椭圆的定义可求得、,即可得出结论.【详解】在椭圆中,,,,则,,可得,所以,,解得,此时点位于椭圆短轴的顶点.因此,满足条件的点的个数为.故选:B.6、B【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.详解】因,且,则有,解得,所以实数的值为3.故选:B7、B【解析】如图设椭圆的左焦点为E,根据题意和椭圆的定义可知,利用余弦定理求出,结合平面向量的数量积计算即可.【详解】由题意知,如图,设椭圆的左焦点为E,则,因为点A、B关于原点对称,所以四边形为平行四边形,由,得,,在中,,所以,由,得,整理,得,又,所以.故选:B8、B【解析】由已知条件求出等差数列的公差,从而可求出【详解】设等差数列的公差为,由,,得,解得,所以,故选:B9、A【解析】首先求出直线过定点,再判断点在圆内,即可判断;【详解】解:直线恒过定点,又,即点在圆内部,所以直线与圆相交;故选:A10、B【解析】分析出直线与轴垂直,据此可得出该直线的倾斜角.【详解】由题意可知,直线与轴垂直,该直线的倾斜角为.故选:B.【点睛】本题考查直线的倾斜角,关键是掌握直线倾斜角的定义,属于基础题11、B【解析】由直线的平行关系可得,解之可得【详解】解:直线与直线平行,,解得故选:12、A【解析】先求出坐标,进而根据空间向量垂直的坐标运算求得答案.【详解】因为,所以,解得.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取的中点G,连接FG,BG,FB,由正方体的几何特征,易证平面AEC//平面BFG,再根据是侧面内一点(含边界),且平面,得到点P在线段BG上运动,然后在等腰中求解.【详解】如图所示:取的中点G,连接FG,BG,FB,在正方体中,易得又因为平面BFG,平面BFG,所以平面BFG,同理证得平面BFG,又因为,所以平面AEC//平面BFG,因为是侧面内一点(含边界),且平面,所以点P线段BG上运动,如图所示:在等腰中,作,且,所以,设点F到线段BG的距离为d,由等面积法得,解得,所以线段长度的取值范围是,故答案为:14、18【解析】根据等差数列通项和前n项和公式即可得到结果.【详解】设等差数列的公差为,由,得,解得,所以故答案为:1815、【解析】求得函数的导数,得到是的唯一零点,转化为方程无实数根或只存在实数根,进而转化为和的图象至多有一个交点(且如果有交点,交点必须在处),利用导数求得函数的单调性和最小值,即可求解.【详解】由题意,函数,可得,因为存在唯一零点,所以是的唯一零点,则关于的方程无实数根或只存在实数根,所以函数和的图象至多有一个交点(且如果有交点,交点必须在处),又由,当时,,单调递减;当时,,单调递增,所以,所以,即即的取值范围是.故答案为:.16、【解析】根据与关系求解即可.【详解】当时,,当时,,检验:,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)见解析【解析】(1)由题意求得,所以椭圆的方程为(2)联立直线与椭圆方程,由题意可得.三角形的高为.,面积表达式,当且仅当时,.即的面积的最大值是(3)结论为.利用题意有.所以试题解析:解:(Ⅰ)设椭圆的半焦距为因为椭圆的离心率是,所以,即由解得所以椭圆的方程为(Ⅱ)将代入,消去整理得令,解得设则,所以点到直线的距离为所以的面积,当且仅当时,所以的面积的最大值是(Ⅲ).证明如下:设直线,的斜率分别是,,则由(Ⅱ)得,所以直线,的倾斜角互补所以,所以所以18、(1)不够;(2)将污水处理池建成长为16.2米,宽为10米时,建造总费用最低,最低费用为90000元.【解析】(1)根据题意结合单价直接计算即可得出;(2)设污水处理池的宽为米,表示出总费用,利用基本不等式可求.【小问1详解】如果将污水处理池的宽建成9米,则长为(米),建造总费用为:(元)因为,所以如果污水处理池的宽建成9米,那么9万元的拨款是不够用的.【小问2详解】设污水处理池的宽为米,建造总费用为元,则污水处理池的长为米.则因为,等号仅当,即时成立,所以时建造总费用取最小值90000,所以将污水处理池建成长为16.2米,宽为10米时,建造总费用最低,最低费用为90000元.19、(1)是,;(2)【解析】(1)由题意设出所在直线方程,与抛物线方程联立,化为关于的一元二次方程,由根与系数的关系即可求得为定值;(2)当的斜率为0时,求得三角形的面积为;当的斜率不为0时,由弦长公式求解,再由点到直线的距离公式求到的距离,代入三角形面积公式,利用函数单调性可得三角形的面积大于,由此可得面积的最小值【详解】(1)由题意知,直线斜率存在,不妨设其方程为,联立抛物线的方程可得,设,,则,,所以,,所以,所以是定值(2)当直线的斜率为0时,,又,,此时当直线的斜率不力0时,,又因为,且直线的斜率不为0,所以,即,所以点到直线的距离,此时,因为,所以,综上,面积的最小值为20、(1)(2)【解析】(1)由圆心到直线的距离等于半径即可求出.(2)由相关点法即可求出轨迹方程.【小问1详解】已知圆与直线相切,所以圆心到直线的距离为半径.所以,所以圆O的标准方程为:【小问2详解】设因为AB的中点是M,则,所以,又因A在圆O上运动,则,所以带入有:,化简得:.线段AB的中点M的轨迹方程为:.21、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,进而求出平面BEF的法向量,然后证明线面平行;(2)算出在向量方向上的投影,进而求得答案.【小问1详解】因为DE⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因为ABCD是正方形,所以DA⊥DC.以D为坐标原点,所在方向分别为轴的正方向建立空间直角坐标系,则A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(2,0,1),所以,,设平面BEF的法向量,因为,所以-2x-2y+2z=0,-2y+z=0,令y=1,则=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论