版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大兴安岭2026届高二数学第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在长方体中,()A. B.C. D.2.已知抛物线的焦点为,为抛物线上第一象限的点,若,则直线的倾斜角为()A. B.C. D.3.若抛物线y2=4x上一点P到x轴的距离为2,则点P到抛物线的焦点F的距离为()A.4 B.5C.6 D.74.已知,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件5.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有()种A.54 B.72C.96 D.1206.从1,2,3,4,5中随机抽取三个数,则这三个数能成为一个三角形三边长的概率为()A. B.C. D.7.圆和圆的位置关系是()A.内含 B.内切C.相交 D.外离8.曲线上存在两点A,B到直线到距离等于到的距离,则()A.12 B.13C.14 D.159.过抛物线C:y2=4x的焦点F分别作斜率为k1、k2的直线l1、l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,若|k1·k2|=2,则|AB|+|DE|的最小值为()A.10 B.12C.14 D.1610.用数学归纳法证明时,第一步应验证不等式()A. B.C. D.11.如图,在四棱锥中,平面,,,则点到直线的距离为()A. B.C. D.212.如图①所示,将一边长为1的正方形沿对角线折起,形成三棱锥,其主视图与俯视图如图②所示,则左视图的面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,,若存在,成立,则实数的取值范围为__________.14.过点与直线平行的直线的方程是________.15.如图,在四棱锥中,平面,底面是菱形,且,则异面直线与所成的角的余弦值为______,点到平面的距离等于______.16.已知圆,以点为中点的弦所在的直线的方程是___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆.(1)过点作圆的切线,求切线的方程;(2)若直线过点且被圆截得的弦长为2,求直线的方程.18.(12分)如图,在空间直角坐标系中有长方体,且,,点E在棱AB上移动.(1)证明:;(2)当E为AB的中点时,求直线AC与平面所成角的正弦值.19.(12分)设命题p:实数x满足,其中;命题q:若,且为真,求实数x的取值范围;若是的充分不必要条件,求实数m的取值范围20.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由21.(12分)已知:方程表示焦点在轴上的椭圆,:方程表示焦点在轴上的双曲线,其中.(1)若“”为真命题,求的取值范围:(2)若“”为假命题,“”为真命题,求的取值范围.22.(10分)阅读本题后面有待完善的问题,在下列三个条件:①,②,③中选择一个作为条件,补充在题中横线处,使问题完善,并解答你构造的问题.(如果选择多个关系并分别解答,在不出现逻辑混乱的情况下,按照第一个解答给分).问题:已知命题,,命题___________,若是的充分不必要条件,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据向量的运算法则得到,带入化简得到答案.【详解】在长方体中,易知,所以.故选:D.2、C【解析】设点,其中,,根据抛物线的定义求得点的坐标,即可求得直线的斜率,即可得解.【详解】设点,其中,,则,可得,则,所以点,故,因此,直线的倾斜角为.故选:C.3、A【解析】根据抛物线y2=4x上一点P到x轴的距离为2,得到点P(3,±2),然后利用抛物线的定义求解.【详解】由题意,知抛物线y2=4x的准线方程为x=-1,∵抛物线y2=4x上一点P到x轴的距离为2,则P(3,±2),∴点P到抛物线的准线的距离为3+1=4,∴点P到抛物线的焦点F的距离为4.故选:A.4、C【解析】根据充要条件的定义进行判断【详解】解:因为函数为增函数,由,所以,故“”是“”的充分条件,由,所以,故“”是“”的必要条件,故“”是“”的充要条件故选:C5、A【解析】根据题意,分2种情况讨论:①、甲是最后一名,则乙可以为第二、三、四名,剩下的三人安排在其他三个名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案【详解】根据题意,甲乙都没有得到冠军,而乙不是最后一名,分2种情况讨论:①甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;②甲不是最后一名,甲乙需要排在第二、三、四名,有种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;则一共有种不同的名次情况,故选:A6、C【解析】列举出所有情况,然后根据两边之和大于第三边数出能构成三角形的情况,进而得到答案.【详解】5个数取3个数的所有情况如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10种情况,而能构成三角形的情况有{2,3,4;2,4,5;3,4,5}共3种情况,故所求概率.故选:C.7、C【解析】根据两圆圆心的距离与两圆半径和差的大小关系即可判断.【详解】解:因为圆的圆心为,半径为,圆的圆心为,半径为,所以两圆圆心的距离为,因为,即,所以圆和圆的位置关系是相交,故选:C.8、D【解析】由题可知A,B为半圆C与抛物线的交点,利用韦达定理及抛物线的定义即求.【详解】由曲线,可得,即,为圆心为,半径为7半圆,又直线为抛物线的准线,点为抛物线的焦点,依题意可知A,B为半圆C与抛物线的交点,由,得,设,则,,∴.故选:D.9、B【解析】设出l1的方程为,与抛物线联立后得到两根之和,两根之积,用弦长公式表达出,同理表达出,利用基本不等式求出的最小值.【详解】抛物线C:y2=4x的焦点F为,直线l1的方程为,则联立后得到,设,,,则,同理设可得:,因为|k1·k2|=2,所以,当且仅当,即或时,等号成立,故选:B10、B【解析】取即可得到第一步应验证不等式.【详解】由题意得,当时,不等式为故选:B11、A【解析】如图,以为坐标原点,建立空间直角坐标系,然后利用空间向量求解即可【详解】因为平面,平面,平面,所以,,因为所以如图,以为坐标原点,建立空间直角坐标系,则,,,,,即.在上的投影向量的长度为,故点到直线的距离为.故选:A12、A【解析】由视图确定该几何体的特征,即可得解.【详解】由主视图可以看出,A点在面上的投影为的中点,由俯视图可以看出C点在面上的投影为的中点,所以其左视图为如图所示的等腰直角三角形,直角边长为,于是左视图的面积为故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由不等式分离参数,令,则求即可【详解】由,得,令,则当时,;当时,;所以在上单调递减,在上单调递增,故由于存在,成立,则故答案为:14、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:15、①.②.【解析】因为底面是菱形,可得,则异面直线与所成的角和与所成的角相等,即可求得异面直线与所成的角的余弦值.在底面从点向作垂线,求证垂直平面,即可求得答案.【详解】根据题意画出其立体图形:如图底面是菱形,则异面直线与所成的角和直线与所成的角相等平面,平面又,底面是菱形即故:异面直线与所成的角的余弦值为:在底面从点向作垂线平面,平面,平面故是到平面的距离故答案为:,.【点睛】本题考查了求异面直线的夹角和点到面距离,解题关键是掌握将求异面直线夹角转化为共面直线夹角的解法,考查了分析能力和推理能力,属于基础题.16、【解析】设,利用以为中点的弦所在的直线即为经过点且垂直于AC的直线求得直线斜率,由点斜式可求得直线方程【详解】圆的方程可化为,可知圆心为设,则以为中点的弦所在的直线即为经过点且垂直于的直线.又知,所以,所以直线的方程为,即故答案为:【点睛】本题考查圆的几何性质,考查直线方程求解,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据直线与圆相切,求得切线的斜率,利用点斜式即可写出切线方程;(2)利用弦长公式,结合已知条件求得直线的斜率,即可求得直线方程.【小问1详解】圆,圆心,半径,又点的坐标满足圆方程,故可得点在圆上,则切线斜率满足,又,故满足题意的切线斜率,则过点的切线方程为,即.【小问2详解】直线过点,若斜率不存在,此时直线的方程为,将其代入可得或,故直线截圆所得弦长为满足题意;若斜率存在时,设直线方程为,则圆心到直线的距离,由弦长公式可得:,解得,也即,解得,则此时直线的方程为:.综上所述,直线的方程为或.18、(1)证明见解析(2)【解析】(1)设,求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直线与平面所成角的正弦值【小问1详解】证明:设,,,,;【小问2详解】当为的中点时,,,设平面的法向量,则,取,得,设直线与平面所成角为,则直线与平面所成角的正弦值为:19、(1)(2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;写出命题所对应的集合,命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,则A是B的真子集,列不等式组可求解【详解】解:(1)由,其中;解得,又,即,由得:,又为真,则,得:,故实数x的取值范围为;由得:命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,A是B的真子集,所以,即故实数m取值范围为:.【点睛】本题考查了二次不等式的解法,复合命题的真假,命题与集合的关系,属于简单题20、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.21、(1)或(2)【解析】(1)先假设命题为真命题,求出的取值范围,为真命题,取补集即可(2)假设命题为真命题,求出的取值范围,根据题意,则命题假设和命题一真一假,分类讨论求的取值范围【小问1详解】解:若为真命题,则,解得,若“”为真命题,则为假命题,或;【小问2详解】若为真命题,则解得,若“”为假命题,则“”为真命题,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年建筑项目环境管理合同
- 灯具框架协议
- 2025年商业智能解决方案应用可行性研究报告
- 2025年智能健康监测系统研发项目可行性研究报告
- 2025年粮食仓储智能管理系统项目可行性研究报告
- 油烟大影响协议书
- 浇筑地面合同协议
- 线路检修合同范本
- 燃气买卖协议合同
- 2025年特高压电网改造项目可行性研究报告
- 2025年中医经典考试题目及答案
- 水电站大坝安全现场检查技术规程 -DL-T 2204
- 国开学习网《园林树木学》形考任务1234答案
- 胶质瘤的围手术期护理
- 数据库应用技术-004-国开机考复习资料
- 手卫生执行率PDCA案例实施分析
- 病理学考试练习题库及答案
- 2025年新高考1卷(新课标Ⅰ卷)语文试卷
- 2025-2030中国女鞋行业市场现状供需分析及投资评估规划分析研究报告
- 2025至2030中国物理气相沉积(PVD)设备行业行情监测与发展动向追踪报告
- 2025年中国EP级蓖麻油行业市场前景预测及投资价值评估分析报告
评论
0/150
提交评论