版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京市西城区北京市第四中学高二数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.不等式的解集为()A. B.C.或 D.或2.已知函数在上单调递增,则实数a的取值范围为()A. B.C. D.3.若,则()A.1 B.0C. D.4.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.45.如图1所示,抛物面天线是指由抛物面(抛物线绕其对称轴旋转形成的曲面)反射器和位于其焦点上的照射器(馈源,通常采用喇叭天线)组成的单反射面型天线,广泛应用于微波和卫星通讯等,具有结构简单、方向性强、工作频带宽等特点.图2是图1的轴截面,,两点关于抛物线的对称轴对称,是抛物线的焦点,是馈源的方向角,记为.焦点到顶点的距离与口径的比为抛物面天线的焦径比,它直接影响天线的效率与信噪比等.若馈源方向角满足,则该抛物面天线的焦径比为()A. B.C. D.26.已知m,n表示两条不同的直线,表示平面,则下列说法正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.如图,、分别为椭圆的左、右焦点,为椭圆上的点,是线段上靠近的三等分点,为正三角形,则椭圆的离心率为()A. B.C. D.8.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.9.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A. B.C. D.10.设变量,满足约束条件,则的最大值为()A.1 B.6C.10 D.1311.设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A. B.C. D.12.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知的顶点A(1,5),边AB上的中线CM所在的直线方程为,边AC上的高BH所在直线方程为,求(1)顶点C的坐标;(2)直线BC的方程;14.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系xOy中,设军营所在平面区域为{(x,y)|x2+y2≤},河岸线所在直线方程为x+2y-4=0.假定将军从点P(,)处出发,只要到达军营所在区域即回到军营,当将军选择最短路程时,饮马点A的纵坐标为______.最短总路程为______15.已知数列满足,,则______.16.在正项等比数列{an}中,若,与的等差中项为12,则等于_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知几何体中,平面平面,是边长为4的菱形,,是直角梯形,,,且(1)求证:;(2)求平面与平面所成角的余弦值18.(12分)已知抛物线:的焦点为,直线与抛物线在第一象限的交点为,且(1)求抛物线的方程;(2)经过焦点作互相垂直的两条直线,,与抛物线相交于,两点,与抛物线相交于,两点.若,分别是线段,的中点,求的最小值19.(12分)如图,正方体的棱长为4,E,F分别是上的点,且.(1)求与平面所成角的正切值;(2)求证:.20.(12分)已知p:方程所表示的曲线为焦点在x轴上的椭圆;q:当时,函数恒成立.(1)若p为真,求实数t的取值范围;(2)若为假命题,且为真命题,求实数t的取值范围21.(12分)已知各项为正数的等比数列中,,.(1)求数列通项公式;(2)设,求数列的前n项和.22.(10分)已知圆,直线(1)证明直线与圆C一定有两个交点;(2)求直线与圆相交的最短弦长,并求对应弦长最短时的直线方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A2、D【解析】根据题意参变分离得到,求出的最小值,进而求出实数a的取值范围.【详解】由题意得:在上恒成立,即,其中在处取得最小值,,所以,解得:,故选:D3、C【解析】由结合二项式定理可得出,利用二项式系数和公式可求得的值.【详解】,当且时,,因此,.故选:C.【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式,考查学生的转化能力与计算能力,属于基础题.4、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B5、B【解析】建立平面直角坐标系,利用题设条件得到得点坐标,代入抛物线方程化简即可求解【详解】建立如图所示的平面直角坐标系,设抛物线的方程为()在中,则所以则所以,所以将代入抛物线方程中得所以或即或(舍)当时,故选:B6、D【解析】根据空间直线与平面间的位置关系判断【详解】若,,也可以有,A错;若,,也可以有,B错;若,,则或,C错;若,,则,这是线面垂直的判定定理之一,D正确故选:D7、D【解析】根据椭圆定义及正三角形的性质可得到\,再在中运用余弦定理得到、的关系,进而求得椭圆的离心率【详解】由椭圆的定义知,,则,因为正三角形,所以,在中,由余弦定理得,则,,故选:D【点睛】本题考查椭圆的离心率的求解,考查考生的逻辑推理能力及运算求解能力,属于中等题.8、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程9、B【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解【详解】由各路口信号灯工作相互独立,可得某人从甲地到乙地恰好遇到2次红灯的概率:故选:B10、C【解析】画出约束条件表示的平面区域,将变形为,可得需要截距最小,观察图象,可得过点时截距最小,求出点A坐标,代入目标式即可.【详解】解:画出约束条件表示的平面区域如图中阴影部分:又,即,要取最大值,则在轴上截距要最小,观察图象可得过点时截距最小,由,得,则.故选:C.11、A【解析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【点睛】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.12、A【解析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【详解】点关于坐标原点的对称点是故选:A二、填空题:本题共4小题,每小题5分,共20分。13、(1);(2).【解析】(1)设出点C的坐标,进而根据点C在中线上及求得答案;(2)设出点B的坐标,进而求出点M的坐标,然后根据中线的方程及求出点B的坐标,进而求出直线BC的方程.【小问1详解】设C点的坐标为,则由题知,即.【小问2详解】设B点的坐标为,则中点M坐标代入中线CM方程则由题知,即,又,则,所以直线BC方程为.14、①.②.【解析】求出P(,)关于直线x+2y4=0对称点P'的坐标,再求出线段OP'与直线x+2y-4=0的交点A,再利用圆的几何性质可得结果.【详解】设P(,)关于直线x+2y4=0的对称点为P'(m,n),则解得因为从点P到军营总路程最短,所以A为线段OP'与直线x+2y4=0的交点,联立得y=(42y),解得y=.所以“将军饮马”的最短总路程为=,故答案为,.【点睛】本题主要考查对称问题以及圆的几何性质,属于中档题.解析几何中点对称问题,主要有以下三种题型:(1)点关于直线对称,关于直线的对称点,利用,且点在对称轴上,列方程组求解即可;(2)直线关于直线对称,利用已知直线与对称轴的交点以及直线上特殊点的对称点(利用(1)求解),两点式求对称直线方程;(3)曲线关于直线对称,结合方法(1)利用逆代法求解.15、1023【解析】由数列递推公式求特定项,依次求下去即可解决.【详解】数列中,则,,,,,,故答案为:102316、128【解析】先根据条件利用等比数列的通项公式列方程组求出首项和公差,进而可得.【详解】设正项等比数列{an}的公比为,由已知,得,①,又,②,由①②得,故答案为:128.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据菱形的性质,结合面面垂直的性质定理、线面垂直的判定定理和性质进行证明即可;(2)建立空间直角坐标系,根据空间向量夹角公式进行求解即可.【详解】(1)证明:连接,交于点,∵四边形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中点,连接,∵是边长为4的菱形,,∴,,以为原点,,,所在直线分别为,,轴建立如图所示的空间直角坐标系,则,,,,∴,,设平面的法向量为,则,即,令,则,,∴,同理可得,平面的一个法向量为,∴,由图知,平面与平面所成角为锐角,故平面与平面所成角余弦值为18、(1);(2)8.【解析】(1)写出抛物线E的准线,利用抛物线定义求出p即可作答.(2)由(1)求出焦点坐标,设出直线的方程,并与抛物线E的方程联立,由此求出C点坐标,同理可得D点坐标,列式计算作答.小问1详解】抛物线:的准线方程为:,由抛物线定义得:,解得,所以抛物线的方程为:.【小问2详解】由(1)知,点,显然直线,的斜率都存在且不为0,设直线斜率为,则的斜率为,直线的方程为:,由消去y并整理得,设,则,于得线段PQ中点,同理得,则,当且仅当,即时取“=”,所以的最小值是8.【点睛】结论点睛:抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离19、(1);(2)证明见解析.【解析】(1)在正方体中,平面,连接,则为与平面所成的角,在直角三角形,求出即可;(2)∵是正方体,又是空间垂直问题,∴易采用向量法,∴建立如图所示的空间直角坐标系,欲证,只须证,再用向量数量积公式求解即可.【小问1详解】在正方体中,平面,连接,则为与平面所成的角,又,,,∴;【小问2详解】如图,以为坐标原点,直线、、分别轴、轴、轴,建立空间直角坐标系.则∴,,∴,∴.20、(1)(2)【解析】(1)由给定条件结合椭圆标准方程的特征列不等式求解作答.(2)求命题q真时的t值范围,再借助“或”联结的命题为真命题求解作答.【小问1详解】因方程所表示的曲线为焦点在x轴上的椭圆,则有,解得,所以实数t的取值范围是.【小问2详解】,则有,当且仅当,即时取“=”,即,因当时,函数恒成立,则,解得,命题q为真命题有,因为假命题,且为真命题,则与一真一假,当p真q假时,,当p假q真时,,所以实数t的取值范围是.21、(1);(2)【解析】(1)根据条件求出即可;(2),然后利用等差数列的求和公式求出答案即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年机械员考试题库及参考答案(基础题)
- 2026年机械员考试题库附答案(a卷)
- 2026年法律法规考试题库附参考答案(能力提升)
- 风险总监面试题集
- 2026年初级银行从业资格之初级个人贷款考试题库及一套完整答案
- 2026年质量员之土建质量基础知识考试题库(a卷)
- 2026年马鞍山师范高等专科学校单招职业倾向性考试题库附答案解析
- 2025年遵义医科大学辅导员考试参考题库附答案
- 广州水务办公室主任工作绩效考核办法含答案
- 2026年交管12123学法减分复习考试题库及答案【真题汇编】
- 机场设备维修与保养操作手册
- 动脉穿刺法教案(2025-2026学年)
- 2025年《肌肉骨骼康复学》期末考试复习参考题库(含答案)
- 国企合作加盟合同范本
- 工程勘察设计收费标准
- 2025年中国工业级小苏打行业市场分析及投资价值评估前景预测报告
- 家具生产工艺流程标准手册
- 消防新队员安全培训课件
- 2025玛纳斯县司法局招聘编制外专职人民调解员人笔试备考题库及答案解析
- 德邦物流系统讲解
- 初中历史时间轴(中外对照横向版)
评论
0/150
提交评论