版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省承德市十三校联考高二数学第一学期期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某商场有四类食品,其中粮食类、植物油类、动物性食品类以及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D.72.以下命题是真命题的是()A.方差和标准差都是刻画样本数据分散程度的统计量B.若m为数据(i=1,2,3,····,2021)的中位数,则C.回归直线可能不经过样本点的中心D.若“”为假命题,则均为假命题3.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是A. B.C D.4.已知数列中,其前项和为,且满足,数列的前项和为,若对恒成立,则实数的值可以是()A. B.2C.3 D.5.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑(nào).如图所示的三棱锥为一鳖臑,且平面,平面,若,,,则()A. B.C. D.6.箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,设事件=“至少有一件次品”,则的对立事件为()A.至多两件次品 B.至多一件次品C.没有次品 D.至少一件次品7.“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.在平面直角坐标系xOy中,点(0,4)关于直线x-y+1=0的对称点为()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)9.已知数列为等比数列,则“,”是“为递减数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.曲线在点处的切线方程是A. B.C. D.11.已知是抛物线:的焦点,直线与抛物线相交于,两点,满足,记线段的中点到抛物线的准线的距离为,则的最大值为()A. B.C. D.12.数列是等比数列,是其前n项之积,若,则的值是()A.1024 B.256C.2 D.512二、填空题:本题共4小题,每小题5分,共20分。13.已知圆,若圆的过点的三条弦的长,,构成等差数列,则该数列的公差的最大值是______.14.已知直线:和:,且,则实数__________,两直线与之间的距离为__________15.平面直角坐标系内动点M()与定点F(4,0)的距离和M到定直线的距离之比是常数,则动点M的轨迹是___________16.已知直线l的方向向量,平面的法向量,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,已知,且当,时,(1)证明数列是等比数列;(2)设,求数列的前项和18.(12分)椭圆C:的左右焦点分别为,,P为椭圆C上一点.(1)当P为椭圆C的上顶点时,求的余弦值;(2)直线与椭圆C交于A,B,若,求k19.(12分)已知数列的前n项和为,且(1)证明数列是等比数列,并求出数列的通项公式;(2)在与之间插入n个数,使得包括与在内的这个数成等差数列,其公差为,求数列的前n项和20.(12分)设双曲线的左、右焦点分别为,,且,一条渐近线的倾斜角为60°(1)求双曲线C的标准方程和离心率;(2)求分别以,为左、右顶点,短轴长等于双曲线虚轴长的椭圆的标准方程21.(12分)冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.应国务院要求,黑龙江某医院选派医生参加援鄂医疗,该院呼吸内科有3名男医生,2名女医生,其中李亮(男)为科室主任;该院病毒感染科有2名男医生,2名女医生,其中张雅(女)为科室主任,现在院方决定从两科室中共选4人参加援鄂医疗(最后结果用数字表达)(1)若至多有1名主任参加,有多少种派法?(2)若呼吸内科至少2名医生参加,有多少种派法?(3)若至少有1名主任参加,且有女医生参加,有多少种派法?22.(10分)如图,在三棱锥中,侧面PBC是边长为2的等边三角形,M,N分别为AB,AP的中点.过MN的平面与侧面PBC交于EF(1)求证:;(2)若平面平面ABC,,求直线PB与平面PAC所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】按照分层抽样的定义进行抽取.【详解】按照分层抽样的定义有,粮食类:植物油类:动物性食品类:果蔬类=4:1:3:2,抽20个出来,则粮食类8个,植物油类2个,动物性食品类6个,果蔬类4个,则抽取的植物油类与果蔬类食品种数之和是6个.故选:C.2、A【解析】A:根据方差和标准差的定义进行判断;B:根据中位数的定义判断;C:根据回归直线必过样本中心点进行判断;D:根据“且”命题真假关系进行判断.【详解】对于A,方差和标准差都是刻画样本数据分散程度的统计量,故A正确;对于B,若为数据,2,3,,的中位数,需先将数据从小到大排列,此时数据里面之间的数顺序可能发生变化,则为排序后的第1010个数据的值,这个数不一定是原来的,故B错误;对于C,回归直线一定经过样本点的中心,,故C错误;对于D,若“”为假命题,则、中至少有一个是假命题,故D错误;故选:A3、B【解析】构造函数,可知函数为奇函数,利用导数分析出函数在上的单调性,并得出,然后分别在和解不等式,由此可得出不等式的解集.【详解】构造函数,该函数的定义域为,由于函数为上的奇函数,则,所以,函数为上的奇函数,且,,.当时,,此时,函数单调递增,由,可得,解得;当时,则函数单调递增,由,可得,解得.综上所述,使得成立的的取值范围是.故选:B.【点睛】本题考查利用函数的单调性求解函数不等式,根据导数不等式的结构构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.4、D【解析】由求出,从而可以求,再根据已知条件不等式恒成立,可以进行适当放大即可.【详解】若n=1,则,故;若,则由得,故,所以,,又因为对恒成立,当时,则恒成立,当时,,所以,,,若n为奇数,则;若n为偶数,则,所以所以,对恒成立,必须满足.故选:D5、A【解析】根据平面,平面求解.【详解】因为平面,平面,所以,又,,,所以,所以,故选:A6、C【解析】利用对立事件的定义,分析即得解【详解】箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,可能出现:“两件次品”,“一件次品,一件正品”,“两件正品”三种情况根据对立事件的定义,事件=“至少有一件次品”其对立事件为:“两件正品”,即”没有次品“故选:C7、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.8、D【解析】设出点(0,4)关于直线的对称点的坐标,根据题意列出方程组,解方程组即可【详解】解:设点(0,4)关于直线x-y+1=0的对称点是(a,b),则,解得:,故选:D9、A【解析】本题可依次判断“,”是否是“为递减数列”的充分条件以及必要条件,即可得出结果.【详解】若等比数列满足、,则数列为递减数列,故“,”是“为递减数列”的充分条件,因为若等比数列满足、,则数列也是递减数列,所以“,”不是“为递减数列”的必要条件,综上所述,“,”是“为递减数列”的充分不必要条件,故选:A.【点睛】本题考查充分条件以及必要条件的判定,考查等比数列以及递减数列的相关性质,体现了基础性和综合性,考查推理能力,是简单题.10、D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.11、C【解析】设,过点,分别作抛物线的准线的垂线,垂足分别为,进而得,再结合余弦定理得,进而根据基本不等式求解得.【详解】解:设,过点,分别作抛物线的准线的垂线,垂足分别为,则,因为点为线段中点,所以根据梯形中位线定理得点到抛物线的准线的距离为,因为,所以在中,由余弦定理得,所以,又因为,所以,当且仅当时等号成立,所以,故.所以的最大值为.故选:C【点睛】本题考查抛物线的定义,直线与抛物线的位置关系,余弦定理,基本不等式,考查运算求解能力,是中档题.本题解题的关键在于根据题意,设,进而结合抛物线的定于与余弦定理得,,再求最值.12、D【解析】设数列的公比为q,由已知建立方程求得q,再利用等比数列的通项公式可求得答案.【详解】解:因为数列是等比数列,是其前n项之积,,设数列的公比为q,所以,解得,所以,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据题意,求得过点的直线截圆所得弦长的最大值和最小值,即可求得公差的最大值.【详解】圆的圆心,半径,设点为点,因为,故点在圆内,当直线过点,且经过圆心时,该直线截圆所得弦长取得最大值;当直线过点,且与直线垂直时,该直线截圆所得弦长取得最小值,此时,则满足题意的直线为,即,又,则该直线截圆所得弦长为;根据题意,要使得数列的公差最大,则,故最大公差.故答案为:.14、①.-4;②.2【解析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案.【详解】解:直线和,,,解得;∴两直线与间的距离是:.故答案为:;2.15、【解析】根据直接法,即可求轨迹.【详解】解:动点与定点的距离和它到定直线的距离之比是常数,根据题意得,点的轨迹就是集合,由此得.将上式两边平方,并化简,得所以,动点的轨迹是长轴长、短轴长分别为12、的椭圆故答案为:16、【解析】由,可得∥,从而可得,代入坐标列方程可求出,从而可求出【详解】因为直线l的方向向量,平面的法向量,,所以∥,所以存在唯一实数,使,所以,所以,解得,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)消去,只保留数列的递推关系,根据题干提示来证明,注意证明首项不是零;(2)利用裂项求和来解决.【小问1详解】证明:由题意,当时,即,,整理,得,,,,数列是以2为首项,2为公比的等比数列【小问2详解】解:由(1)知,,则,,,,,各项相加,可得,当n=1成立,故18、(1)(2)【解析】(1)利用余弦定理可求顶角的余弦值.(2)联立直线方程和椭圆方程,消元后利用韦达定理结合弦长公式可求的值.【小问1详解】当为椭圆的上顶点时,,在中,由余弦定理知.【小问2详解】设,,将直线与椭圆:联立得:,因为直线过焦点,故恒成立,又,由弦长公式得,化简整理得:,解得.19、(1)证明见解析,(2)【解析】(1)根据公式得到,得到,再根据等比数列公式得到答案.(2)根据等差数列定义得到,再利用错位相减法计算得到答案.【小问1详解】,当时,,得到;当时,,两式相减得到,整理得到,即,故,数列是首项为,公比为的等比数列,,即,验证时满足条件,故.【小问2详解】,故,,,两式相减得到:,整理得到:,故.20、(1),2(2)【解析】(1)结合,联立即得解;(2)由题意,即得解.【详解】(1)由题意,又解得:故双曲线C的标准方程为:,离心率为(2)由题意椭圆的焦点在轴上,设椭圆方程为故即椭圆方程为:21、(1)105种(2)105种(3)87种【解析】(1)至多有1名主任参加,包括两种情况:一种是无主任参加,另一种是只有1名主任参加,利用分类计数原理可得结果;(2)呼吸内科至少2名医生参加,分三种情况:第一种是呼吸内科2名医生参加,第二种呼吸内科3名医生参加,第三种呼吸内科4名医生参加,然后利用分类计数原理可得结果;(3)由于张雅既是主任,也是女医生.属于特殊元素,优先考虑,分有张雅和无张雅两种情况求解即可.【详解】(1)直接法:若无主任,若只有1名主任,共105种,间接法:(2)直接法:,间接法:(3)张雅既是主任,也是女医生.属于特殊元素,优先考虑,所以以是否有张雅来分类第一类:若有张雅,第二类:若无张雅,则李亮必定去,共87种【点睛】此题考查了分步和分类计数原理,正确分步和分类是解决此题的关键,属于中档题.22、(1)证明见解析(2)【解析】(1)由题意先证明平面PBC,然后由线面平行的性质定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026河北沧州医学高等专科学校高层次人才选聘50人参考笔试题库附答案解析
- 2026中能建城市投资发展有限公司校园招聘模拟笔试试题及答案解析
- 2025重庆机场集团有限公司校园招聘36人备考笔试题库及答案解析
- 2025山西长治市上党区公益性岗位人员招聘50人备考考试试题及答案解析
- 2025福建厦门市集美区宁宝幼儿园非在编厨房人员招聘1人模拟笔试试题及答案解析
- 2025江苏南京鼓楼医院人力资源服务中心招聘4人备考考试试题及答案解析
- 2025广东佛山市南海区国有资产监督管理局财务总监招聘1人参考笔试题库附答案解析
- 2025广西玉林市玉州区仁东中心卫生院招聘编外人员2人备考考试试题及答案解析
- 2025湖南衡阳市衡阳县卫健系统招聘专业技术人员48人考试备考题库及答案解析
- 2025广东广州市卫生健康委员会直属事业单位广州市第十二人民医院招聘26人(第一次)备考笔试试题及答案解析
- 职业技术学院2024级药膳与食疗专业人才培养方案
- 2025年山东枣庄大禹水务发展集团有限公司招聘笔试参考题库附带答案详解
- 2025版人教版高中物理精讲精练必修1第18讲:牛顿运动定律的应用 解析版
- 病原生物与免疫学复习题含答案
- 村民小组长申请书
- 2025年中国烟草总公司招聘笔试参考题库含答案解析
- 【MOOC】体质健康智慧教程-西南交通大学 中国大学慕课MOOC答案
- 第五课 中国的外交课件高考政治一轮复习统编版选择性必修一当代国际政治与经济
- 家电入股合同范例
- 2023天津市五校高二上学期期中考试高二生物
- 咨询推广服务合同模板
评论
0/150
提交评论