版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江西省崇仁县第二中学高一数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数()的最大值为()A. B.1C.3 D.42.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切3.已知,则a,b,c的大小关系是()A. B.C. D.4.设,,则A. B.C. D.5.函数的定义域是()A. B.C. D.6.已知是定义域为的偶函数,当时,,则的解集为()A. B.C. D.7.函数的部分图象如图所示,将函数的图象向左平移个单位长度后得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的最小正周期为C.函数的图象的对称轴为直线D.函数的单调递增区间为8.设全集,则图中阴影部分所表示的集合是A. B.C. D.9.规定从甲地到乙地通话min的电话费由(元)决定,其中>0,[]是大于或等于的最小整数,如[2]=2,[2.7]=3,[2.1]=3,则从甲地到乙地通话时间为4.5min的电话费为()元A.4.8 B.5.2C.5.6 D.610.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的大小关系是___________________.(用“”连结)12.将函数图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式为________.13.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.14.已知幂函数的图象过点,则______.15.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②若函数的图象关于直线对称,则;③函数在上单调递减,在上单调递增;④当时,函数有四个零点其中正确的是___________(填上所有正确说法的序号)16.已知函数的部分图象如图所示,则____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且的图象经过点(1)求的值;(2)求在区间上的最大值;(3)若,求证:在区间内存在零点18.已知函数是定义在R上的奇函数(1)用定义法证明为增函数;(2)对任意,都有恒成立,求实数k的取值范围19.已知函数,该函数图象一条对称轴与其相邻的一个对称中心的距离为(1)求函数的对称轴和对称中心;(2)求在上的单调递增区间20.物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络.其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元),仓库到车站的距离x(单位:千米,),其中与成反比,每月库存货物费(单位:万元)与x成正比;若在距离车站9千米处建仓库,则和分别为2万元和7.2万元.(1)求出与解析式;(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?21.已知函数(1)若在区间上有最小值为,求实数m的值;(2)若时,对任意的,总有,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】对函数进行化简,即可求出最值.【详解】,∴当时,取得最大值为3.故选:C.2、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.3、B【解析】根据指数函数的单调性、对数函数的单调性可得答案.【详解】根据指数函数的单调性可知,,即,即c>1,由对数函数的单调性可知,即.所以c>a>b故选:B4、D【解析】利用对数运算法则即可得出【详解】,,,,则.故选D.【点睛】本题考查了对数的运算法则,考查了计算能力,属于基础题5、A【解析】利用对数函数的真数大于零,即可求解.【详解】由函数,则,解得,所以函数的定义域为.故选:A【点睛】本题考查了对数型复合函数的定义域,需熟记对数的真数大于零,属于基础题.6、C【解析】首先画出函数的图象,并当时,,由图象求不等式的解集.【详解】由题意画出函数的图象,当时,,解得,是偶函数,时,,由图象可知或,解得:或,所以不等式的解集是.故选:C【点睛】本题考查函数图象的应用,利用函数图象解不等式,意在考查数形结合分析问题和解决问题的能力,属于几次题型.7、D【解析】根据图象得到函数解析式,将函数的图象向左平移个单位长度后得到的图象,可得解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论.【详解】由图象可知,,∴,则.将点的坐标代入中,整理得,∴,即;,∴,∴.∵将函数的图象向左平移个单位长度后得到的图象,∴.,∴既不是奇函数也不是偶函数,故A错误;∴的最小正周期,故B不正确.令,解得,则函数图像的对称轴为直线.故C错误;由,可得,∴函数的单调递增区间为.故D正确;故选:D.【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.8、D【解析】阴影部分表示的集合为在集合N中去掉集合M,N的交集,即得解.【详解】由维恩图可知,阴影部分表示的集合为在集合N中去掉集合M,N的交集,由题得,所以阴影部分表示的集合为.故选:D【点睛】本题主要考查维恩图,考查集合的运算,意在考查学生对这些知识的理解掌握水平,属于基础题.9、C【解析】计算,代入函数,计算即得结果.【详解】由,得.故选:C.10、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.12、.【解析】由题意利用函数的图象变换规律,即可得出结论.【详解】将函数图象上所有的点向右平行移动个单位长度,可得函数为,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),可得函数为.故答案为:.13、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.14、【解析】结合幂函数定义,采用待定系数法可求得解析式,代入可得结果.【详解】为幂函数,可设,,解得:,,.故答案为:.【点睛】本题考查幂函数解析式和函数值的求解问题,关键是能够明确幂函数的定义,采用待定系数法求解函数解析式,属于基础题.15、②③【解析】①:根据平面向量夹角的性质进行求解判断;②:利用函数的对称性,结合两角和(差)的正余弦公式进行求解判断即可;③:利用导数的性质、函数的奇偶性进行求解判断即可.④:根据对数函数的性质,结合零点的定义进行求解判断即可【详解】①:因为与的夹角为钝角,所以有且与不能反向共线,因此有,当与反向共线时,,所以有且,因此本说法不正确;②:因为函数的图象关于直线对称,所以有,即,于是有:,化简,得,因为,所以,因此本说法正确;③:因为,所以函数偶函数,,当时,单调递增,即在上单调递增,又因为该函数是偶函数,所以该在上单调递减,因此本说法正确;④:,问题转化为函数与函数的交点个数问题,如图所示:当时,,此时有四个交点,当时,,所以交点的个数不是四个,因此本说法不正确,故答案为:②③16、①.②.【解析】分析:先根据四分之一周期求根据最高点求.详解:因为因为点睛:已知函数的图象求解析式(1).(2)由函数周期求(3)利用“五点法”中相对应的特殊点求.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)证明见解析【解析】(1)将点代入解析式求解;(2)根据函数单调性求解最大值;(3)零点存在性定理证明在区间内存在零点.【小问1详解】因为函数,且的图象经过点,所以.所以.【小问2详解】因为,所以.所以在区间上单调递减.所以在区间上的最大值是.所以.所以在区间上的最大值是.【小问3详解】因为,所以.因为,,所以,又在区间上的图象是一条连续不断的曲线,由零点存在性定理可得:在区间内存在零点18、(1)证明见解析(2)【解析】(1)根据函数单调性定义及指数函数的单调性与值域即可证明;(2)由已知条件,利用函数的奇偶性和单调性,可得对恒成立,然后分离参数,利用基本不等式求出最值即可得答案.【小问1详解】证明:设,则,由,可得,即,又,,所以,即,则在上为增函数;【小问2详解】解:因为任意,都有恒成立,且函数是定义在R上的奇函数,所以对恒成立,又由(1)知函数在上为增函数,所以对恒成立,由,有,所以对恒成立,设,由递减,可得,所以,当且仅当时取得等号,所以,即的取值范围是.19、(1)对称轴为,;,(2)和【解析】(1)先把化简成一个角的三角函数形式,再整体代换法去求的对称轴和对称中心;(2)整体代换法去求在上的单调递增区间即可.【小问1详解】由题可知,由对称轴与其相邻的一个对称中心的距离为,得,解得,所以令,即,所以的对称轴为,;令,即,所以的对称中心为,【小问2详解】令∵,∴,由图可知,只需满足或,即或,∴在上的单调递增区间是和20、(1),(2)把仓库建在距离车站4千米处才能使两项费用之和最小,最小费用是7.2万元【解析】(1)设出与以及与x的解析式,将x=9的费用代入,求得答案;(2)列出两项费用之和的表达式,利用基本不等式求得其最小值,可得答案.【小问1详解】设,,其中,当时,,.解得,,所以,.【小问2详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年广东揭阳市市直卫生健康事业单位赴外地院校招聘工作人员27人备考笔试题库及答案解析
- 2025年甘肃省甘南州碌曲县选调工作人员和项目人员26人择优入编考试考试参考试题及答案解析
- 2025中国农业科学院饲料研究所家禽营养与饲料创新团队科研助理招聘1人备考笔试题库及答案解析
- 四川省医学科学院·四川省人民医院2026年度专职科研人员、工程师及实验技术员招聘备考笔试题库及答案解析
- 2025福建厦门市集美区康城幼儿园非在编教职工招聘1人备考考试试题及答案解析
- 2025云南永德昆西医院、普洱西盟仁康医院招聘参考考试题库及答案解析
- 2025河南省中西医结合医院招聘员额制高层次人才11人备考笔试题库及答案解析
- 2026福建三明市教育局开展“扬帆绿都·圆梦三明”教育类高层次人才专项公开招聘44人备考笔试题库及答案解析
- 2025江西赣江新区永修投资集团招聘3人备考考试题库及答案解析
- 2025中建交通建设(雄安)有限公司招聘备考笔试试题及答案解析
- 六年级下册语文《默写小纸条》
- 宜宾市2024-2025学年上期义务教育质量监测九年级物理试题(含答案)
- 发电机日常巡查表(完整版)
- 瑞幸咖啡认证考试题库(咖啡师)
- 品管圈PDCA改善案例-降低住院患者跌倒发生率
- 个体诊所选址报告范文
- DB32T 3129-2016 适合机械化作业的单体钢架塑料大棚技术规范
- 土方倒运的方案
- 2024光伏发电工程施工质量验收规程
- 画说学习通超星期末考试答案章节答案2024年
- 苏教版一年级数学下册全册教案(完整版)教学设计含教学反思
评论
0/150
提交评论