2026届安徽省利辛一中高一数学第一学期期末质量跟踪监视试题含解析_第1页
2026届安徽省利辛一中高一数学第一学期期末质量跟踪监视试题含解析_第2页
2026届安徽省利辛一中高一数学第一学期期末质量跟踪监视试题含解析_第3页
2026届安徽省利辛一中高一数学第一学期期末质量跟踪监视试题含解析_第4页
2026届安徽省利辛一中高一数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省利辛一中高一数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=-4x+2x+1的值域是()A. B.C. D.2.已知命题,则p的否定为()A. B.C. D.3.已知扇形的周长是6,圆心角为,则扇形的面积是()A.1 B.2C.3 D.44.逻辑斯蒂函数fx=11+eA.函数fx的图象关于点0,fB.函数fx的值域为(0,1C.不等式fx>D.存在实数a,使得关于x的方程fx5.函数的图像大致是A. B.C. D.6.已知函数是上的偶函数,且在区间上是单调递增的,,,是锐角三角形的三个内角,则下列不等式中一定成立的是A. B.C. D.7.直线l:x﹣2y+k=0(k∈R)过点(0,2),则k的值为()A.﹣4 B.4C.2 D.﹣28.不等式的解集为()A.{x|1<x<4} B.{x|﹣1<x<4}C.{x|﹣4<x<1} D.{x|﹣1<x<3}9.若,则所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限10.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则不等式的解集为______12.已知,均为正数,且,则的最大值为____,的最小值为____.13.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________14.Sigmoid函数是一个在生物学、计算机神经网络等领域常用的函数模型,其解析式为S(x)=11+e-x,则此函数在R上________(填“单调递增”“单调递减”或15.已知函数f(x)=sin(ωx+)(其中ω>0),若x=为函数f(x)的一个零点,且函数f(x)在(,)上是单调函数,则ω的最大值为______16.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则的值是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)证明:函数在区间上单调递增;(2)已知,试比较三个数a,b,c的大小,并说明理由18.已知函数.(1)求函数的最小正周期;(2)求函数的单调减区间;(3)当时,画出函数的图象.19.如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中为中点.(1)求证:平面;(2)求异面直线与所成角的余弦值;(3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.20.为保护环境,污水进入河流前都要进行净化处理.我市工业园区某工厂的污水先排入净化池,然后加入净化剂进行净化处理.根据实验得出,在一定范围内,每放入1个单位的净化剂,在污水中释放的浓度y(单位:毫克/立方米)随着时间x(单位:小时)变化的函数关系式近似为.若多次加进净化剂,则某一时刻净化剂在污水中释放的浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用.(1)若投放1个单位的净化剂4小时后,求净化剂在污水中释放的浓度;(2)若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达几小时?(结果精确到0.1,参考数据:,)(3)若第一次投放1个单位的净化剂,3小时后再投放2个单位的净化剂,设第二次投放t小时后污水中净化剂浓度为(毫克/立方米),其中,求的表达式和浓度的最小值.21.已知函数的图象过点(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若为偶函数,求实数的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),然后利用二次函数求值域【详解】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),其对称轴方程为t=,∴当t=时,g(t)有最大值为∴函数f(x)=-4x+2x+1的值域是故选A【点睛】本题考查利用换元法及二次函数求值域,是基础题2、D【解析】全称命题的否定为存在命题,利用相关定义进行判断即可【详解】全称命题的否定为存在命题,命题,则为.故选:D3、B【解析】设扇形的半径为r,弧长为l,先由周长求出半径和弧长,即可求出扇形的面积.【详解】设扇形的半径为r,弧长为l,因为圆心角为,所以.因为扇形的周长是6,所以,解得:.所以扇形的面积是.故选:B4、D【解析】A选项,代入f-x,计算fx+f-x=1和f0=12,可得对称性;B选项,由【详解】解:对于A:fx=11+e-x=ex1+ex,f-x对于B:fx=11+e-x,易知e-x>0,所以1+e对于C:由fx=11+e-x容易判断,函数fx在R上单调递增,且f对于D:因为函数fx在R上单调递增,所以方程fx故选:D.5、A【解析】依题意,,函数为减函数,且由向右平移了一个单位,故选.点睛:本题主要考查对数函数的图像与性质,考查图像的平移变换.对于对数函数,当时,函数为减函数,图像过,当时,函数为增函数,图像过.函数与函数的图像可以通过平移得到,口诀是“左加右减”.在平移过程中要注意原来图像的边界.6、C【解析】因为是锐角的三个内角,所以,得,两边同取余弦函数,可得,因为在上单调递增,且是偶函数,所以在上减函数,由,可得,故选C.点睛:本题考查了比较大小问题,解答中熟练推导抽象函数的图象与性质,合理利用函数的单调性进行比较大小是解答的关键,着重考查学生的推理与运算能力,本题的解答中,根据锐角三角形,得出与的大小关系是解答的一个难点.7、B【解析】将点(0,2)代入直线l:x﹣2y+k=0(k∈R)的方程中,可解得k的值.【详解】由直线l:x﹣2y+k=0(k∈R)过点(0,2).所以点的坐标满足直线l的方程即则,故选:B.【点睛】本题考查点在直线上求参数,属于基础题.8、B【解析】把不等式化为,求出解集即可【详解】解:不等式可化为,即,解得﹣1<x<4,所以不等式的解集为{x|﹣1<x<4}故选:B【点评】本题考查了一元二次不等式的解法,是基础题9、A【解析】先由题中不等式得出在第二象限,然后求出的范围,即可判断其所在象限【详解】因为,,所以,故在第二象限,即,故,当为偶数时,在第一象限,当为奇数时,在第三象限,即所在象限是第一、三象限故选A.【点睛】本题考查了三角函数的象限角,属于基础题10、D【解析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围.【详解】由题设,,易知:关于对称,又恒成立,当时,,则,可得;当时,,则,可得;当,即时,,则,即,可得;当,即时,,则,即,可得;综上,.故选:D.【点睛】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分x小于等于0和x大于0两种情况根据分段函数分别得到f(x)的解析式,把得到的f(x)的解析式分别代入不等式得到两个一元二次不等式,分别求出各自的解集,求出两解集的并集即可得到原不等式的解集【详解】解:当x≤0时,f(x)=x+2,代入不等式得:x+2≥x2,即(x-2)(x+1)≤0,解得-1≤x≤2,所以原不等式的解集为[-1,0];当x>0时,f(x)=-x+2,代入不等式得:-x+2≥x2,即(x+2)(x-1)≤0,解得-2≤x≤1,所以原不等式的解集为[0,1],综上原不等式的解集为[-1,1].故答案为[-1,1]【点睛】此题考查了不等式的解法,考查了转化思想和分类讨论的思想,是一道基础题12、①.②.##【解析】利用基本不等式的性质即可求出最大值,再通过消元转化为二次函数求最值即可.【详解】解:由题意,得4=2a+b≥2,当且仅当2a=b,即a=1,b=2时等号成立,所以0<ab≤2,所以ab的最大值为2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,当a=,b=时取等号.故答案为:,.13、【解析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为.故答案为:【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.14、①.单调递增②.0,1【解析】由题可得S(x)=1-1e【详解】∵S(x)=11+e∀x1,x2∵x1<x∴S(x1)-S(所以函数S(x)=11+e又ex所以ex+1>1,0<1故答案为:单调递增;0,1.15、【解析】由题意,为函数的一个零点,可得,且函数在,上是单调函数可得,即可求的最大值【详解】解:由题意,为函数的一个零点,可得,则.函数在,上是单调函数,可得,即.当时,可得的最大值为3故答案为3.【点睛】本题考查了正弦型三角函数的图象及性质的应用,属于中档题.16、【解析】,把代入,得,,,故答案为考点:1、已知三角函数的图象求解析式;2、三角函数的周期性【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据函数单调性的定义即可证明;(2)先比较三个数的大小,再利用函数的单调性即可比较a,b,c的大小.【小问1详解】证明:函数,任取,且,则,因为,且,所以,,所以,即,所以函数在区间上单调递增;【小问2详解】解:由(1)可知函数在区间上单调递增,因为,,,所以,所以,即.18、(1);(2);(2)详见解析.【解析】(1)利用二倍角公式和辅助角法得到函数为,再利用周期公式求解;所以函数的周期为;(2)令,利用正弦函数的性质求解;(3)由列表,利用“五点法”画出函数图象.:【详解】(1),,,所以函数的周期为;(2)令,解得,所以函数的单调减区间是;(3)由列表如下:0xy0-2020则函数的图象如下:.19、(1)见解析;(2);(3)存在,..【解析】(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可;(2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp-DQC=VQ-PCD,即可得出结论试题解析:(1)证明:在中为中点,所以.又侧面底面,平面平面平面,所以平面.(2)解:连接,在直角梯形中,,有且,所以四边形是平行四边形,所以.由(1)知为锐角,所以是异面直线与所成的角,因为,在中,,所以,在中,因为,所以,在中,,所以,所以异面直线与所成的角的余弦值为.(3)解:假设存在点,使得它到平面的距离为.设,则,由(2)得,在中,,所以,由得,所以存在点满足题意,此时.20、(1)6毫克/立方米(2)7.1(3),;的最小值为12毫克/立方米【解析】(1)由函数解析式,将代入即可得解;(2)分和两种情况讨论,根据题意列出不等式,从而可得出答案;(3)根据题意写出函数的解析式,再根据基本不等式即可求得最小值.【小问1详解】解:由,当时,,所以若投放1个单位的净化剂4小时后,净化剂在污水中释放的浓度为6毫克/立方米;【小问2详解】解:因为净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用,当时,令,得恒成立,所以当时,起到净化污水的作用,当时,令,得,则,所以,综上所述当时,起到净化污水的作用,所以若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达7.1小时;【小问3详解】解:因为第一次投入1个单位的净化剂,3小时后再投入2个单位净化剂,要计算的是第二次投放t小时后污水中净化剂浓度为,所以,,因为,所以,当且仅当,即时取等号,所以,,当时,取最小值12毫克/立方米.21、(1)(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论