北京东城北京二中2026届数学高一上期末综合测试模拟试题含解析_第1页
北京东城北京二中2026届数学高一上期末综合测试模拟试题含解析_第2页
北京东城北京二中2026届数学高一上期末综合测试模拟试题含解析_第3页
北京东城北京二中2026届数学高一上期末综合测试模拟试题含解析_第4页
北京东城北京二中2026届数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京东城北京二中2026届数学高一上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数(且)的图像经过定点P,则点P的坐标是()A. B.C. D.2.已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A'B'C'D'(如图所示),其中A'D'=2,B'C'=4,A'B'=1,则直角梯形DC边的长度是A.5 B.2C.25 D.3.已知直线与直线平行且与圆:相切,则直线的方程是A. B.或C. D.或4.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是().A. B.C. D.5.函数(其中mR)的图像不可能是()A. B.C. D.6.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是A. B.C. D.7.如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.所在平面 B.

所在平面C.所在平面 D.所在平面8.如果且,则等于A.2016 B.2017C.1009 D.20189.已知函数,则()A.5 B.2C.0 D.110.已知,且,对任意的实数,函数不可能A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,若对任意的,都存在,使得,则实数的取值范围为_________.12.直线与直线平行,则实数的值为_______.13.若命题“”为真命题,则的取值范围是______14.如图所示,正方体的棱长为,分别是棱,的中点,过直线的平面分别与棱.交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中真命题的序号为___________.15.已知fx是定义域为R的奇函数,且当x>0时,fx=ln16.“”是“”的_______条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分又不必要”中的一个)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量=(3,4),=(-1,2)(1)求向量与夹角的余弦值;(2)若向量-与+2平行,求λ的值18.已知集合(1)当时,求;(2)若,求实数的取值范围.19.函数的一段图象如下图所示.(1)求函数的解析式;(2)将函数的图象向右平移个单位,得到的图象.求直线与函数的图象在内所有交点的横坐标之和.20.已知,,且.(1)求实数a的值;(2)求.21.函数在一个周期内的图象如图所示,O为坐标原点,M,N为图象上相邻的最高点与最低点,也在该图象上,且(1)求的解析式;(2)的图象向左平移1个单位后得到的图象,试求函数在上的最大值和最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由函数图像的平移变换或根据可得.【详解】因为,所以当,即时,函数值为定值0,所以点P坐标为.另解:因为可以由向右平移一个单位长度后,再向下平移1个单位长度得到,由过定点,所以过定点.故选:B2、B【解析】根据斜二测画法,原来的高变成了45°方向的线段,且长度是原高的一半,∴原高为AB=2而横向长度不变,且梯形ABCD是直角梯形,∴DC=故选B3、D【解析】圆的圆心为,半径为,因为直线,所以,设直线的方程为,由题意得或所以,直线的方程或4、D【解析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【详解】解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除A、C,随着时间的增加,先跑步,开始时随的变化快,后步行,则随的变化慢,所以适合的图象为D;故选:D5、C【解析】对m分类讨论,利用对勾函数的单调性,逐一进行判断图像即可.【详解】易见,①当时,图像如A选项;②当时,时,易见在递增,得在递增;时,令,得为对勾函数,所以在递增,递减,所以根据复合函数单调性得在递减,递增,图像为D;③当时,时,易见在递减,故在递减;时为对勾函数,所以在递减,递增,图像为B.因此,图像不可能是C.故选:C.【点睛】本题考查了利用对勾函数单调性来判断函数的图像,属于中档题.6、D【解析】本题首先可以求出函数关于轴对称的函数的解析式,然后根据题意得出函数与函数的图像至少有3个交点,最后根据图像计算得出结果【详解】若,则,因为时,,所以,所以若关于轴对称,则有,即,设,画出函数的图像,结合函数的单调性和函数图像的凹凸性可知对数函数与三角函数在点处相交为临界情况,即要使与的图像至少有3个交点,需要且满足,即,解得,故选D【点睛】本题考查的是函数的对称性、对数函数以及三角函数的相关性质,主要考查如何根据函数对称性来求出函数解析式,考查学生对对数函数以及三角函数的图像的理解,考查推理能力,考查数形结合思想,是难题7、B【解析】本题为折叠问题,分析折叠前与折叠后位置关系、几何量的变与不变,可得HA、HE、HF三者相互垂直,根据线面垂直的判定定理,可判断AH与平面HEF的垂直【详解】根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH,B正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥AH,∴EF⊥平面HAG,∴平面HAG⊥AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;∵HG不垂直于AG,∴HG⊥平面AEF不正确,D不正确故选B【点睛】本题考查直线与平面垂直的判定,一般利用线线⇔线面⇔面面,垂直关系的相互转化判断8、D【解析】∵f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b),∴令b=1得,f(a+1)=f(a)•f(1),∴,所以,共1009项,所以.故选D.9、C【解析】由分段函数,选择计算【详解】由题意可得.故选:C.【点睛】本题考查分段函数的求值,属于简单题10、C【解析】,当时,,为偶函数当时,,为奇函数当且时,既不奇函数又不是偶函数故选二、填空题:本大题共6小题,每小题5分,共30分。11、##a≤【解析】时,,原问题.【详解】∵,,∴,∴,即对任意的,都存在,使恒成立,∴有.当时,显然不等式恒成立;当时,,解得;当时,,此时不成立.综上,.故答案为:.12、【解析】根据直线一般式,两直线平行则有,代入即可求解.【详解】由题意,直线与直线平行,则有故答案为:【点睛】本题考查直线一般式方程下的平行公式,属于基础题.13、【解析】依题意可得恒成立,则,得到一元二次不等式,解得即可;【详解】解:依题意可得,命题等价于恒成立,故只需要解得,即故答案为:14、①②④【解析】①连接,在正方体中,平面,所以平面平面,所以①是真命题;②连接MN,因为平面,所以,四边形MENF的对角线EF是定值,要使四边形MENF面积最小,只需MN的长最小即可,当M为棱的中点时,即当且仅当时,四边形MENF的面积最小;③因为,所以四边形是菱形,当时,的长度由大变小,当时,的长度由小变大,所以周长,是单调函数,是假命题;④连接,把四棱锥分割成两个小三棱锥,它们以为底,为顶点,因为三角形的面积是个常数,到平面的距离也是一个常数,所以四棱锥的体积为常函数;命题中真命题的序号为①②④考点:面面垂直及几何体体积公式15、1【解析】首先根据x>0时fx的解析式求出f1【详解】因为当x>0时,fx=ln又因为fx是定义域为R的奇函数,所以f故答案为:1.16、充分不必要【解析】解不等式,利用集合的包含关系判断可得出结论.【详解】由得,解得或,因或,因此,“”是“”的充分不必要条件.故答案为:充分不必要.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)-2.【解析】(1)利用平面向量的数量积公式求出夹角的余弦值;(2)根据向量平行的坐标关系得到λ的方程,求值【详解】向量=(3,4),=(-1,2)(1)向量与夹角的余弦值;(2)向量-=(3+λ,4-2λ)与+2=(1,8)平行,则8(3+λ)=4-2λ,解得λ=-2【点睛】本题考查了平面向量数量积公式的运用以及向量平行的坐标关系,属于基础题18、(1);(2).【解析】(1)根据集合的运算法则计算;(2)由得,然后分类和求解【详解】(1)当时,中不等式为,即,∴或,则(2)∵,∴,①当时,,即,此时;②当时,,即,此时.综上的取值范围为.19、(1)(2)【解析】(1)由图象可计算得;(2)由题意可求,进而可以求出在给定区间内与已知直线的交点的横坐标,问题得解.【小问1详解】由题图知,,于是,将的图象向左平移个单位长度,得的图象.于是所以,【小问2详解】由题意得故由,得因为,所以所以或或或,所以,在给定区间内,所有交点的横坐标之和为.20、(1)(2)【解析】(1)根据同角三角函数关系求解或,结合角所在象限求出,从而得到答案;(2)在第一问的基础上,得到正弦和余弦,进而求出正切和余弦,利用诱导公式求出答案.【小问1详解】由题意得:,解得:或因为,所以,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论