八年级数学试卷易错易错压轴勾股定理选择题专题练习(含答案)100_第1页
八年级数学试卷易错易错压轴勾股定理选择题专题练习(含答案)100_第2页
八年级数学试卷易错易错压轴勾股定理选择题专题练习(含答案)100_第3页
八年级数学试卷易错易错压轴勾股定理选择题专题练习(含答案)100_第4页
八年级数学试卷易错易错压轴勾股定理选择题专题练习(含答案)100_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级数学试卷易错易错压轴选择题精选:勾股定理选择题专题练习(含答案)100(5)一、易错易错压轴选择题精选:勾股定理选择题1.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接B,D和B,E.下列四个结论:①BD=CE,②BD⊥CE,③∠ACE+∠DBC=30°,④.其中,正确的个数是()A.1 B.2 C.3 D.42.在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣2)、点B(3m,4m+1)(m≠﹣1),点C(6,2),则对角线BD的最小值是()A.3 B.2 C.5 D.63.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为()A. B. C. D.4.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是()A. B.6 C. D.5.如图,已知圆柱的底面直径,高,小虫在圆柱侧面爬行,从点爬到点,然后再沿另一面爬回点,则小虫爬行的最短路程的平方为()A.18 B.48 C.120 D.726.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=,CB的反向延长线上有一动点D,以AD为边在右侧作等边三角形,连CE,CE最短长为()A. B. C. D.7.如图,四边形ABCD中,AC⊥BD于O,AB=3,BC=4,CD=5,则AD的长为()A.1 B.3 C.4 D.28.如图,已知中,的垂直平分线分别交于连接,则的长为()A. B. C. D.9.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=6,DC=2,点P是AB上的动点,则PC+PD的最小值为()A.8 B.10 C.12 D.1410.已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,下列结论错误的是().A.AF⊥AQ B.AF=AQ C.AF=AD D.11.已知长方体的长2cm、宽为1cm、高为4cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是()A.cm B.5cm C.cm D.4.5cm12.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为()A.49 B.25 C.12 D.1013.在中,是直线上一点,已知,,,,则的长为()A.4或14 B.10或14 C.14 D.1014.如图,在中,平分,平分的外角,且交于,若,则的值为()A.8 B.16 C.32 D.6415.如图,分别以直角三边为边向外作三个正方形,其面积分别用表示,若,,那么()A.9 B.5 C.53 D.4516.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形17.有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5 B. C. D.5或18.如图,BD为的对角线,于点E,BF⊥DC于点F,DE、BF相交于点H,直线BF交线段AD的延长线于点G,下列结论:①;②;③AB=BH;④;⑤;其中正确的结论有()A.①②③ B.②③⑤ C.①⑤ D.③④19.下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是()A. B.C. D.20.如图:在△ABC中,∠B=45°,D是AB边上一点,连接CD,过A作AF⊥CD交CD于G,交BC于点F.已知AC=CD,CG=3,DG=1,则下列结论正确的是()①∠ACD=2∠FAB②③④AC=AFA.①②③ B.①②③④ C.②③④ D.①③④21.如图,点和点在数轴上对应的数分别是4和2,分别以点和点为圆心,线段的长度为半径画弧,在数轴的上方交于点.再以原点为圆心,为半径画弧,与数轴的正半轴交于点,则点对应的数为()A.3.5 B. C. D.22.如图,在中,、分别是、的中点.已知,,,则的长为()A. B. C. D.23.图中不能证明勾股定理的是()A. B. C. D.24.已知,等边三角形ΔABC中,边长为2,则面积为()A.1 B.2 C. D.25.如图,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为()A.3 B. C. D.926.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.121 B.110 C.100 D.9027.由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a=2,b=3,c=4 D.(b+c)(b-c)=a²28.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A. B. C. D.29.三个正方形的面积如图,正方形A的面积为()A.6 B.36 C.64 D.830.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为,,;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为,,,其中,,,,则().A.86 B.61 C.54 D.48【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.B解析:B【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【详解】解:如图,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,在Rt△BDC中,,而BC2=2AB2,∴BD2<2AB2,∴故④错误,综上,正确的个数为2个.故选:B.【点睛】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.2.D解析:D【分析】先根据B(3m,4m+1),可知B在直线y=x+1上,所以当BD⊥直线y=x+1时,BD最小,找一等量关系列关于m的方程,作辅助线:过B作BH⊥x轴于H,则BH=4m+1,利用三角形相似得BH2=EH•FH,列等式求m的值,得BD的长即可.【详解】解:如图,∵点B(3m,4m+1),∴令,∴y=x+1,∴B在直线y=x+1上,∴当BD⊥直线y=x+1时,BD最小,过B作BH⊥x轴于H,则BH=4m+1,∵BE在直线y=x+1上,且点E在x轴上,∴E(−,0),G(0,1)∵F是AC的中点∵A(0,−2),点C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH⋅FH,∴(4m+1)2=(3m+)(3−3m)解得:m1=−(舍),m2=,∴B(,),∴BD=2BF=2×=6,则对角线BD的最小值是6;故选:D.【点睛】本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B的坐标确定其所在的直线的解析式是关键.3.D解析:D【解析】【分析】由勾股定理求出各边,再观察结果的规律.【详解】∵OP=1,OP1=OP2=,OP3==2,∴OP4=,…,OP2018=.故选D【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.4.C解析:C【解析】【分析】根据三角形的面积判断出PE+PF的长等于AC的长,这样就变成了求AC的长;在Rt△ACD和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的长,再利用勾股定理就可以求出AC的长,也就是PE+PF的长.【详解】∵△DCB为等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,∴S△BCD=BD•PE+CD•PF=BD•AC,∴PE+PF=AC,设AD=x,BD=CD=3x,AB=4x,∵AC2=CD2-AD2=(3x)2-x2=8x2,∵AC2=BC2-AB2=()2-(4x)2,∴x=2,∴AC=4,∴PE+PF=4.故选C【点睛】本题考查勾股定理、等腰三角形的性质等知识,解题的关键是学会利用面积法证明线段之间的关系,灵活运用勾股定理解决问题,属于中考常考题型.5.D解析:D【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【详解】解:把圆柱侧面展开,展开图如图所示,点,的最短距离为线段的长.∵已知圆柱的底面直径,∴,在中,,,∴,∴从点爬到点,然后再沿另一面爬回点,则小虫爬行的最短路程的平方为.故选D.【点睛】本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.6.C解析:C【分析】在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,易证△AB’D≌△ABE,可得∠ABE=∠B’=60°,因此点E的轨迹是一条直线,过点C作CH⊥BE,则点H即为使得BE最小时的E点的位置,然后根据直角三角形的性质和勾股定理即可得出答案.【详解】解:在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,∵∠ACB=90°,∠ABC=60°,∴△AB’B是等边三角形,∴∠B’=∠B’AB=60°,AB’=AB,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60°,∴点E在直线BE上运动,过点C作CH⊥BE于点H,则点H即为使得BE最小时的E点的位置,∠CBH=180°-∠ABC-∠ABE=60°,∴∠BCH=30°,∴BH=BC=,∴CH==.即BE的最小值是.故选C.【点睛】本题是一道动点问题,综合考查了全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质和勾股定理等知识,将△ACB构造成等边三角形,通过全等证出∠ABC是定值,即点E的运动轨迹是直线是解决此题的关键.7.B解析:B【分析】设OA=a,OB=b,OC=c,OD=d,根据勾股定理求出a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,即可证得a2+d2=18,由此得到答案.【详解】设OA=a,OB=b,OC=c,OD=d,由勾股定理得,a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,则a2+b2+c2+b2+c2+d2=50,∴a2+d2+2(b2+c2)=50,∴a2+d2=50﹣16×2=18,∴AD=,故选:B.【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.8.C解析:C【分析】先根据勾股定理的逆定理证明△ABC是直角三角形,根据垂直平分线的性质证得AD=BD,由此根据勾股定理求出CD.【详解】∵AB=10,AC=8,BC=6,∴,∴△ABC是直角三角形,且∠C=90°,∵DE垂直平分AB,∴AD=BD,在Rt△BCD中,,∴,解得CD=,故选:C.【点睛】此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.9.B解析:B【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=2,BD=6,得到BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=2,BD=6,∴BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=8,根据勾股定理可得DC′=.故选:B.【点睛】此题考查了轴对称﹣线路最短的问题,确定动点P为何位置时PC+PD的值最小是解题的关键.10.C解析:C【分析】根据BD、CE分别是AC、AB边上的高,推导出;再结合题意,可证明,由此可得,;再经得,从而证明AF⊥AQ;最后由勾股定理得,从而得到,即可得到答案.【详解】如图,CE和BD相较于H∵BD、CE分别是AC、AB边上的高∴,∴∴∵∴又∵BQ=AC且CF=AB∴∴,,故B、D结论正确;∵∴∴∴AF⊥AQ故A结论正确;∵∴∵∴∴故选:C.【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解.11.B解析:B【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】解:根据题意,如图所示,最短路径有以下三种情况:(1)沿,,,剪开,得图;(2)沿,,,,,剪开,得图;(3)沿,,,,,剪开,得图;综上所述,最短路径应为(1)所示,所以,即.故选:B.【点睛】此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.12.C解析:C【解析】试题解析:如图,∵大正方形的面积是25,∴c2=25,∴a2+b2=c2=25,∵直角三角形的面积是(25-1)÷4=6,又∵直角三角形的面积是ab=6,∴ab=12.故选C.13.A解析:A【分析】根据AC=13,AD=12,CD=5,可判断出△ADC是直角三角形,在Rt△ADB中求出BD,继而可得出BC的长度.【详解】∵AC=13,AD=12,CD=5,∴,∴△ABD是直角三角形,AD⊥BC,由于点D在直线BC上,分两种情况讨论:当点D在线段BC上时,如图所示,在Rt△ADB中,,则;②当点D在BC延长线上时,如图所示,在Rt△ADB中,,则.故答案为:A.【点睛】本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.14.D解析:D【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE2+CF2=EF2.【详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,EF=8,由勾股定理可知CE2+CF2=EF2=64.故选:D.【点睛】此题考查角平分线的定义,直角三角形的判定,勾股定理的运用,解题关键在于掌握各性质定义.15.A解析:A【分析】根据勾股定理与正方形的性质解答.【详解】解:在Rt△ABC中,AB2=BC2+AC2,∵S1=AB2,S2=BC2,S3=AC2,∴S1=S2+S3.∵S2=7,S3=2,∴S1=7+2=9.故选:A.【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.16.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.17.D解析:D【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边==5,当4是斜边时,另一条直角边=,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.18.B解析:B【分析】根据直角三角形的意义和性质可以得到解答.【详解】解:由题意,∴,②正确;∵∠DBC=45°,DE⊥BC,∴∠EDB=∠DBC=45°,∴BE=DE∴,∴BH=CD=AB,③正确;∵,∴AB⊥CD,∴即,⑤正确,∵没有依据支持①④成立,∴②③⑤正确故选B.【点睛】本题考查直角三角形的意义和性质,灵活应用有关知识求解是解题关键.19.D解析:D【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【详解】解:A、因为92+402=412,故能构成直角三角形;B、因为52+52=,故能构成直角三角形;C、因为,故能构成直角三角形;D、因为112+122≠152,故不能构成直角三角形;故选:D.【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足关系时,则三角形为直角三角形.20.B解析:B【分析】过点C作于点H,根据等腰三角形的性质得到,根据得到,可以证得①是正确的,利用勾股定理求出AG的长,算出三角形ACD的面积证明②是正确的,再根据角度之间的关系证明,得到④是正确的,最后利用勾股定理求出CF的长,得到③是正确的.【详解】解:如图,过点C作于点H,∵,∴,,∵,∴,∴,∴,故①正确;∵,,∴,∴,在中,,∴,故②正确;∵,,∴,∵,,∴,∵,,,∴,∴,故④正确;∴,在中,,故③正确.故选:B.【点睛】本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理.21.B解析:B【分析】如图,作CD⊥AB于点D,由题意可得△ABC是等边三角形,从而可得BD、OD的长,然后根据勾股定理即可求出CD与OC的长,进而可得OM的长,于是可得答案.【详解】解:∵点和点在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD⊥AB于点D,则由题意得:CA=CB=AB=2,∴△ABC是等边三角形,∴BD=AD=,∴OD=OB+BD=3,,∴,∴OM=OC=,∴点对应的数为.故选:B.【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.22.C解析:C【分析】设EC=x,DC=y,则直角△BCE中,x2+4y2=BE2=16,在直角△ADC中,4x2+y2=AD2=49,由方程组可求得x2+y2,在直角△ABC中,【详解】解:设EC=x,DC=y,∠ACB=90°,∵、分别是、的中点,∴AC=2EC=2x,BC=2DC=2y,∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=16在直角△ADC中,AC2+CD2=4x2+y2=AD2=49,∴,即,在直角△ABC中,.故选:C.【点睛】本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE和直角△ADC求得的值是解题的关键.23.A解析:A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论,找出不能证明的那个选项.【详解】解:A选项不能证明勾股定理;B选项,通过大正方形面积的不同表示方法,可以列式,可得;C选项,通过梯形的面积的不同表示方法,可以列式,可得;D选项,通过这个不规则图象的面积的不同表示方法,可以列式,可得.故选:A.【点睛】本题考查勾股定理的证明,解题的关键是掌握勾股定理的证明方法.24.D解析:D【解析】根据题意可画图为:过点A作AD⊥BC,垂足为D,∵∠B=60°,∴∠BAD=30°,∵AB=2,∴AD=,∴S△ABC=BC·AD=×2×=.故选D.25.C解析:C【分析】做点F做交AD于点H,因此要求出EF的长,只要求出EH和HF即可;由折叠的性质可得BE=DE=9-AE,在中应用勾股定理求得AE和BE,同理在中应用勾股定理求得BF,在中应用勾股定理即可求得EF.【详解】过点F做交AD于点H.∵四边形是四边形沿EF折叠所得,∴ED=BE,CF=,∵ED=BE,DE=AD-AE=9-AE∴BE=9-AE∵,AB=3,BE=9-AE∴∴AE=4∴DE=5∴∴,,∴∴BF=5,EH=1∵,HF=3,EH=1∴故选:C.【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.26.B解析:B【分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论