2026届重庆市万州区高一上数学期末综合测试试题含解析_第1页
2026届重庆市万州区高一上数学期末综合测试试题含解析_第2页
2026届重庆市万州区高一上数学期末综合测试试题含解析_第3页
2026届重庆市万州区高一上数学期末综合测试试题含解析_第4页
2026届重庆市万州区高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届重庆市万州区高一上数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在上有两个零点,则的取值范围为()A. B.C. D.2.已知,若,则A.1 B.2C.3 D.43.下列大小关系正确的是A. B.C. D.4.若函数的值域为,则实数的取值范围是()A. B.C. D.5.已知向量,,,若,,则()A. B.C. D.6.,,这三个数之间的大小顺序是()A. B.C. D.7.已知,,则“使得”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.已知函数在区间上单调递增,且在区间上只取得一次最大值,则取值范围是()A. B.C. D.9.在空间中,直线平行于直线,直线与为异面直线,若,则异面直线与所成角的大小为()A. B.C. D.10.设若,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是_______12.已知定义在区间上的奇函数满足:,且当时,,则____________.13.若函数的图象与的图象关于对称,则_________.14.函数在区间上的单调性是______.(填写“单调递增”或“单调递减”)15.关于的不等式的解集是________16.若函数在区间上为增函数,则实数的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知非空数集,设为集合中所有元素之和,集合是由集合的所有子集组成的集合(1)若集合,写出和集合;(2)若集合中的元素都是正整数,且对任意的正整数、、、、,都存在集合,使得,则称集合具有性质①若集合,判断集合是否具有性质,并说明理由;②若集合具有性质,且,求的最小值及此时中元素的最大值的所有可能取值18.已知圆C过点,且与圆M:关于直线对称求圆C的方程;过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由19.已知二次函数.(1)求的对称轴;(2)若,求的值及的最值.20.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值21.已知集合,,(1)求集合A,B及.(2)若,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先化简,再令,求出范围,根据在上有两个零点,作图分析,求得的取值范围.【详解】,由,又,则可令,又函数在上有两个零点,作图分析:则,解得.故选:B.【点睛】本题考查了辅助角公式,换元法的运用,三角函数的图象与性质,属于中档题.2、A【解析】构造函数,则为奇函数,根据可求得,进而可得到【详解】令,则为奇函数,且,由题意得,∴,∴,∴.故选A【点睛】本题考查运用奇函数的性质求函数值,解题的关键是根据题意构造函数,体现了转化思想在解题中的应用,同时也考查观察、构造的能力,属于基础题3、C【解析】根据题意,由于那么根据与0,1的大小关系比较可知结论为,选C.考点:指数函数与对数函数的值域点评:主要是利用指数函数和对数函数的性质来比较大小,属于基础题4、C【解析】因为函数的值域为,所以可以取到所有非负数,即的最小值非正.【详解】因为,且的值域为,所以,解得.故选:C.5、C【解析】计算出向量的坐标,然后利用共线向量的坐标表示得出关于实数的等式,解出即可.【详解】向量,,,又且,,解得.故选:C.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标表示,考查计算能力,属于基础题.6、C【解析】利用指数函数和对数函数的性质比较即可【详解】解:因为在上为减函数,且,所以,因为在上为增函数,且,所以,因为在上为增函数,且,所以,综上,,故选:C7、C【解析】依据子集的定义进行判断即可解决二者间的逻辑关系.【详解】若使得,则有成立;若,则有使得成立.则“使得”是“”的充要条件故选:C8、C【解析】根据三角恒等变换化简,结合函数单调区间和取得最值的情况,利用整体法即可求得参数的范围.【详解】因为,因为在区间上单调递增,由,则,则,解得,即;当时,,要使得该函数取得一次最大值,故只需,解得;综上所述,的取值范围为.故选:C.第II卷9、A【解析】根据异面直线所成角的定义与范围可得结果.【详解】因为且,故异面直线与所成角的大小为的补角,即为.故选:A.10、A【解析】将分别与比较大小,即可判断得三者的大小关系.【详解】因为,,,所以可得的大小关系为.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.考点:圆锥的侧面展开图与体积.12、【解析】由函数已知的奇偶性可得、,再由对称性进而可得周期性得解.【详解】因为在区间上是奇函数,所以,,,得,因为,,所以的周期为..故答案为:.13、【解析】求出的反函数即得【详解】因为函数的图象与的图象关于对称,所以是的反函数,的值域是,由得,即,所以故答案为:14、单调递增【解析】求出函数单调递增区间,再判断作答.【详解】函数的图象对称轴为,因此,函数的单调递增区间为,而,所以函数在区间上的单调性是单调递增.故答案为:单调递增15、【解析】不等式,可变形为:,所以.即,解得或.故答案为.16、【解析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)①有,理由见解析;②的最小值为,所有可能取值是、、、、.【解析】(1)根据题中定义可写出与;(2)(i)求得,取、、、、,找出对应的集合,使得,即可得出结论;(ii)设,不妨设,根据题中定义分析出、,,,,,然后验证当、、、、时,集合符合题意,即可得解.【小问1详解】解:由题中定义可得,.【小问2详解】解:(ⅰ)集合具有性质,理由如下:因为,所以当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;综上可得,集合具有性质;(ⅱ)设集合,不妨设因为为正整数,所以,因为存在使得,所以此时中不能包含元素、、、且,所以.所以因为存在使得,所以此时中不能包含元素及、、、且,所以,所以若,则、、,而,所以不存在,使得,所以若,则、、,而,所以不存在,使得,所以同理可知,,若,则,所以当时,若,则取,可知不存在,使得,所以,解得又因为,所以经检验,当、、、、时,集合符合题意所以最小值为,且集合中元素的最大值的所有可能取值是、、、、.【点睛】关键点点睛:本题考查集合的新定义问题,解题时充分抓住题中的新定义,结合反证法结合不等式的基本性质逐项推导,求出每一项的取值范围,进而求解.18、(1)(2)直线AB和OP一定平行.证明见解析【解析】由已知中圆C过点,且圆M:关于直线对称,可以求出圆心坐标,即可求出圆C的方程;由已知可得直线PA和直线PB的斜率存在,且互为相反数,设PA:,PB:,求出A,B坐标后,代入斜率公式,判断直线OP和AB斜率是否相等,即可得到答案【详解】由题意可得点C和点关于直线对称,且圆C和圆M的半径相等,都等于r设,由且,解得:,故原C的方程为再把点代入圆C的方程,求得故圆的方程为:;证明:过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,则得直线OP和AB平行,理由如下:由题意知,直线PA和直线PB斜率存在,且互为相反数,故可设PA:,PB:由,得,因为的横坐标一定是该方程的解,,同理可得由于AB的斜率的斜率,所以直线AB和OP一定平行【点睛】本题主要考查了直线和圆的方程的应用,关于直线对称的圆的方程,其中根据已知条件求出圆C的方程是解答本题的关键,考查推理与运算能力,属于中档题19、(1)(2)的值是,最小值是,无最大值【解析】(1)根据二次函数的对称轴公式,即可得到结果;(2)由,可求出的值,再根据二次函数的开口和对称轴,即可求出最值.【小问1详解】解:因为二次函数,所以对称轴【小问2详解】解:因为,所以.所以.所以.因为,所以开口向上,又对称轴为,所以最小值为,无最大值.20、(1);(2);(3)见解析【解析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的单调性得出函数的单调性,最后根据函数的单调性即可计算出函数的最值【详解】(1)当点的坐标为,点的坐标为,因为点也在图像上,所以,即;(2)设函数上,则有,即,而在的图像上,所以,代入得;(3)因为、、,所以,,令函数,因为当时,函数单调递减,所以当时,函数单调递增,,,综上所述,最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论