河北省邢台一中2026届数学高二上期末检测试题含解析_第1页
河北省邢台一中2026届数学高二上期末检测试题含解析_第2页
河北省邢台一中2026届数学高二上期末检测试题含解析_第3页
河北省邢台一中2026届数学高二上期末检测试题含解析_第4页
河北省邢台一中2026届数学高二上期末检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邢台一中2026届数学高二上期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若点,在抛物线上,是坐标原点,若等边三角形的面积为,则该抛物线的方程是()A. B.C. D.2.已知直线过点,,则直线的方程为()A. B.C. D.3.已知直线与垂直,则为()A.2 B.C.-2 D.4.已知双曲线的右焦点为F,则点F到其一条渐近线的距离为()A.1 B.2C.3 D.45.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.6.已知函数,则()A.函数的极大值为,无极小值 B.函数的极小值为,无极大值C.函数的极大值为0,无极小值 D.函数的极小值为0,无极大值7.如图所示的程序框图,阅读下面的程序框图,则输出的S=()A.14 B.20C.30 D.558.已知数列满足:,数列的前n项和为,若恒成立,则的取值范围是()A. B.C. D.9.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B.C. D.10.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.11.阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A. B.C. D.12.设,,,…,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则不等式的解集为____________14.若圆被直线平分,则值为__________15.在空间直角坐标系中,点关于原点的对称点为点,则___________.16.如图,一个酒杯的内壁的轴截面是抛物线的一部分,杯口宽cm,杯深8cm,称为抛物线酒杯.①在杯口放一个表面积为的玻璃球,则球面上的点到杯底的最小距离为______cm;②在杯内放入一个小的玻璃球,要使球触及酒杯底部,则玻璃球的半径的取值范围为______(单位:cm)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司从2020年初起生产某种高科技产品,初始投入资金为1000万元,到年底资金增长50%.预计以后每年资金增长率与第一年相同,但每年年底公司要扣除消费资金x万元,余下资金再投入下一年的生产.设第n年年底扣除消费资金后的剩余资金为万元.(1)用x表示,,并写出与的关系式;.(2)若企业希望经过5年后,使企业剩余资金达3000万元,试确定每年年底扣除的消费资金x的值(精确到万元).18.(12分)已知椭圆的焦距为,离心率为(1)求椭圆方程;(2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且,,成等比数列,求的值19.(12分)如图,在长方体中,底面是正方形,O是的中点,(1)证明:(2)求直线与平面所成角的正弦值20.(12分)已知函数在处有极值.(1)求的值;(2)求函数在上的最大值与最小值.21.(12分)已知椭圆C:的离心率为,点为椭圆C上一点(1)求椭圆C的方程;(2)若M,N是椭圆C上的两个动点,且的角平分线总是垂直于y轴,求证:直线MN的斜率为定值22.(10分)2021年10月16日,搭载“神舟十三号”的火箭发射升空,有很多民众通过手机、电视等方式观看有关新闻.某机构将关注这件事的时间在2小时以上的人称为“天文爱好者”,否则称为“非天文爱好者”,该机构通过调查,从参与调查的人群中随机抽取100人进行分析,得到下表(单位:人):天文爱好者非天文爱好者合计女203050男351550合计5545100(1)能否有99%的把握认为“天文爱好者”或“非天文爱好者”与性别有关?(2)现从抽取的女性人群中,按“天文爱好者”和“非天文爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,记其中“天文爱好者”的人数为X,求X的分布列和数学期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.828

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等边三角形的面积求得边长,根据角度求得点的坐标,代入抛物线方程求得的值.【详解】设等边三角形的边长为,则,解得根据抛物线的对称性可知,且,设点在轴上方,则点的坐标为,即,将代入抛物线方程得,解得,故抛物线方程为故选:A2、C【解析】根据两点的坐标和直线的两点式方程计算化简即可.【详解】由直线的两点式方程可得,直线l的方程为,即故选:C3、A【解析】利用一般式中直线垂直的系数关系列式求解.【详解】因为直线与垂直,故选:A.4、A【解析】由双曲线方程可写出右焦点坐标,再写一渐近线方程,根据点到直线的距离公式可得答案.【详解】双曲线的右焦点F坐标为,根据双曲线的对称性,不妨取一条渐近线为,故点F到渐近线的距离为,故选:A5、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D6、A【解析】利用导数来求得的极值.【详解】的定义域为,,在递增;在递减,所以的极大值为,没有极小值.故选:A7、C【解析】经分析为直到型循环结构,按照循环结构进行执行,当满足跳出的条件时即可输出值【详解】解:第一次循环S=1,i=2;第二次循环S=1+22=5,i=3;第三次循环S=5+32=14,i=4;第四次循环S=14+42=30,i=5;此时5>4,跳出循环,故输出的值为30故选:C.8、D【解析】由于,所以利用裂项相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【详解】,故,故恒成立等价于,即恒成立,化简得到,因为,当且仅当,即时取等号,所以故选:D9、A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题10、A【解析】利用对立事件概率公式可求得所求事件的概率.【详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.11、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.12、B【解析】根据已知条件求得的规律,从而确定正确选项.【详解】,,,,,……,以此类推,,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】易得函数为奇函数,则不等式即为不等式,利用导数判断函数得单调性,再根据函数得单调性解不等式即可.【详解】解:函数得定义域为R,因为,所以函数为奇函数,则不等式即为不等式,,所以函数在R上是增函数,所以,解得,即不等式的解集为.故答案为:.14、;【解析】求出圆的圆心坐标,代入直线方程求解即可【详解】解:的圆心圆被直线平分,可知直线经过圆的圆心,可得解得;故答案为:1【点睛】本题考查直线与圆的位置关系的应用,属于基础题15、【解析】先利用关于原点对称的点的坐标特征求出点,再利用空间两点间的距离公式即可求.【详解】因为B与关于原点对称,故,所以.故答案为:.16、①.②.【解析】根据题意,,进而得,,故最小距离为;进而建立坐标系,得抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,此时设玻璃球轴截面所在圆的方程为,进而只需满足抛物线上的点到圆心的距离大于等于半径恒成立,再根据几何关系求解即可.【详解】因为杯口放一个表面积为的玻璃球,所以球的半径为,又因为杯口宽cm,所以如图1所示,有,所以,所以,所以,又因为杯深8cm,即故最小距离为如图1所示,建立直角坐标系,易知,设抛物线的方程为,所以将代入得,故抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,如图2,设玻璃球轴截面所在圆的方程为,依题意,需满足抛物线上的点到圆心的距离大于等于半径恒成立,即,则有恒成立,解得,可得.所以玻璃球的半径的取值范围为.故答案为:;【点睛】本题考查抛物线的应用,考查数学建模能力,运算求解能力,是中档题.本题第二问解题的关键在于设出球触及酒杯底部的轴截面圆的方程,进而将问题转化为抛物线上的点到圆心的距离大于等于半径恒成立求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)x=348【解析】(1)根据题意直接得,,进而归纳出;(2)由(1)可得,利用等比数列的求和公式可得,结合即可计算出d的值.【小问1详解】由题意知,,,;【小问2详解】由(1)可得,,则,所以,即,当时,,解得,当时,万元.故该企业每年年底扣除消费资金为348万元时,5年后企业剩余资金为3000万元.18、(1);(2).【解析】(1)由焦距为,离心率为结合性质,列出关于的方程组,求出从而求出椭圆方程;(2)设出直线方程,代入椭圆方程,求出点D、E的坐标,然后利用|BD|,|BE|,|DE|成等比数列,即可求解【详解】(1)由已知,,解得,所以椭圆的方程为(2)由(1)得过点的直线为,由,得,所以,所以,依题意,因为,,成等比数列,所以,所以,即,当时,,无解,当时,,解得,所以,解得,所以,当,,成等比数列时,【点睛】方法点睛(1)求椭圆方程的常用方法:①待定系数法;②定义法;③相关点法(2)直线与圆锥曲线的综合问题,常将直线方程代入圆锥曲线方程,从而得到关于(或)的一元二次方程,设出交点坐标),利用韦达定理得出坐标的关系,同时注意判别式大于零求出参数的范围(或者得到关于参数的不等关系),然后将所求转化到参数上来再求解.如本题及,联立即可求解.注意圆锥曲线问题中,常参数多、字母多、运算繁琐,应注意设而不求的思想、整体思想的应用.属于中档题.19、(1)证明见解析(2)【解析】(1)以A为坐标原点,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,令,可得的坐标,再求数量积可得答案;(2)求出平面的法向量、的坐标,由线面角的向量求法可得答案.【小问1详解】在长方体中,以A为坐标原点,的方向分别为x,y,z轴的正方向,建立如图所示的空间直角坐标系不妨令,则,,因为,所以【小问2详解】由(1)可知,,,设平面的法向量,则令,得,设直线与平面所成的角,则.20、(1),;(2)最大值为,最小值为【解析】(1)对函数求导,根据函数在处取极值得出,再由极值为,得出,构造一个关于的二元一次方程组,便可解出的值;(2)由(1)可知,求出,利用导数研究函数在上的单调性,比较极值和端点值的大小,即可得出在上的最大值与最小值.【详解】解:(1)由题可知,,的定义域为,,由于在处有极值,则,即,解得:,,(2)由(1)可知,其定义域是,,令,而,解得,由,得;由,得,则在区间上,,,的变化情况表如下:120单调递减单调递增可得,,,由于,则,所以,函数在区间上的最大值为,最小值为.【点睛】本题考查已知极值求参数值和函数在闭区间内的最值问题,考查利用导函数研究函数在给定闭区间内的单调性,以及通过比较极值和端点值确定函数在闭区间内的最值,考查运算能力.21、(1);(2)证明见解析.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据角平分线的性质,结合一元二次方程根与系数关系、斜率公式进行求解即可.【小问1详解】椭圆的离心率,又,∴∵椭圆C:经过点,解得,∴椭圆C的方程为;【小问2详解】∵∠MPN的角平分线总垂直于y轴,∴MP与NP所在直线关于直线对称.设直线MP的斜率为k,则直线NP的斜率为∴设直线MP的方程为,直线NP的方程为设点,由消去y,得∵点在椭圆C上,则有,即同理可得∴,又∴直线MN的斜率为【点睛】关键点睛:由∠MPN的角平分线总垂直于y轴,得到MP与NP所在直线关于直线对称是解题的关键.22、(1)有(2)分布列见解析,【解析】(1)依题意由列联表计算出卡方,与参考数值比较,即可判断;(2)按照分层

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论