版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省青岛市崂山区第二中学高二上数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.据有关文献记载:我国古代一座层塔共挂了盏灯,且相邻两层中的下一层灯数比上一层灯数都多为常数盏,底层的灯数是顶层的倍,则塔的底层共有灯()A.盏 B.盏C.盏 D.盏2.若变量x,y满足约束条件,则目标函数最大值为()A.1 B.-5C.-2 D.-73.已知椭圆:的左、右焦点分别为,,下顶点为,直线与椭圆的另一个交点为,若为等腰三角形,则椭圆的离心率为()A. B.C. D.4.是等差数列,且,,则的值()A. B.C. D.5.椭圆离心率是()A. B.C. D.6.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为()A. B.C. D.7.已知直线经过点,且是的方向向量,则点到的距离为()A. B.C. D.8.甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙下成平局的概率()A.50% B.30%C.10% D.60%9.一个袋中装有大小和质地相同的5个球,其中有2个红色球,3个绿色球,从袋中不放回地依次随机摸出2个球,下列结论正确的是()A.第一次摸到绿球的概率是 B.第二次摸到绿球的概率是C.两次都摸到绿球的概率是 D.两次都摸到红球的概率是10.已知向量,,且与互相垂直,则()A. B.C. D.11.已知,,直线:,:,且,则的最小值为()A.2 B.4C.8 D.912.如果命题为真命题,为假命题,那么()A.命题,都是真命题 B.命题,都是假命题C.命题,至少有一个是真命题 D.命题,只有一个是真命题二、填空题:本题共4小题,每小题5分,共20分。13.与直线平行,且距离为的直线方程为______14.已知双曲线的渐近线上两点A,B的中点坐标为(2,2),则直线AB的斜率是_________.15.莱昂哈德·欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心、垂心和外心共线.后来人们称这条直线为该三角形的欧拉线.已知的三个顶点坐标分别是,,,则的垂心坐标为______,的欧拉线方程为______16.如果圆锥的底面圆半径为1,母线长为2,则该圆锥的侧面积为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)唐代诗人李颀的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即为回到军营.军营所在区域可表示为.(1)求“将军饮马”的最短总路程;(2)因军情紧急,将军来不及饮马,直接从A点沿倾斜角为45°的直线路径火速回营,已知回营路径与军营边界的交点为M,N,军营中心与M,N连线的斜率分别为,,试求的值.18.(12分)(1)若在是减函数,求实数m的取值范围;(2)已知函数在R上无极值点,求a的值.19.(12分)在△ABC中,角A,B,C所对的边为a,b,c,其中,,且(1)求角B的值;(2)若,判断△ABC的形状20.(12分)已知椭圆的长轴长与短轴长之比为2,、分别为其左、右焦点.请从下列两个条件中选择一个作为已知条件,完成下面的问题:①过点且斜率为1的直线与椭圆E相切;②过且垂直于x轴的直线与椭圆在第一象限交于点P,且的面积为.(只能从①②中选择一个作为已知)(1)求椭圆E的方程;(2)过点的直线l与椭圆E交于A,B两点,与直线交于H点,若,.证明:为定值21.(12分)如图,水平桌面上放置一个棱长为4的正方体的水槽,水面高度恰为正方体棱长的一半,在该正方体侧面有一个小孔(小孔的大小忽略不计)E,E点到CD的距离为3,若该正方体水槽绕CD倾斜(CD始终在桌面上).(1)证明图2中的水面也是平行四边形;(2)当水恰好流出时,侧面与桌面所成的角的大小.22.(10分)设函数.(1)当k=1时,求函数的单调区间;(2)当时,求函数在上的最小值m和最大值M.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据给定条件利用等差数列前n项和公式列式计算即可作答.【详解】依题意,层塔从上层到下层挂灯盏数依次排成一列可得等差数列,,于是得,解得,,所以塔的底层共有灯盏.故选:C2、A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【详解】解:由得作出不等式组对应的平面区域如图(阴影部分平移直线,由图象可知当直线,过点时取得最大值,由,解得,所以代入目标函数,得,故选:A3、B【解析】由椭圆定义可得各边长,利用三角形相似,可得点坐标,再根据点在椭圆上,可得离心率.【详解】如图所示:因为为等腰三角形,且,又,所以,所以,过点作轴,垂足为,则,由,,得,因为点在椭圆上,所以,所以,即离心率,故选:B.4、B【解析】根据等差数列的性质计算【详解】因为是等差数列,所以,,也成等差数列,所以故选:B5、C【解析】将方程转化为椭圆的标准方程,求得a,c,再由离心率公式求得答案.【详解】解:由得,所以,则,所以椭圆的离心率,故选:C.6、A【解析】根据双曲线渐近线方程得a和b的关系,根据焦点在抛物线准线上得c的值,结合a、b、c关系即可求解.【详解】∵双曲线的一条渐近线方程是,∴,∵准线方程是,∴,∵,∴,,∴双曲线标准方程为:.故选:A.7、B【解析】求出,根据点到直线的距离的向量公式进行求解.【详解】因为,为的一个方向向量,所以点到直线的距离.故选:B8、A【解析】根据甲获胜和甲、乙两人下成平局是互斥事件即可求解.【详解】甲不输有两种情况:甲获胜或甲、乙两人下成平局,甲获胜和甲、乙两人下成平局是互斥事件,所以甲、乙两人下成平局的概率为.故选:A.9、C【解析】对选项A,直接求出第一次摸球且摸到绿球的概率;对选项B,第二次摸到绿球分两种情况,第一次摸到绿球且第二也摸到绿球和第一次摸到红球且第二次摸到绿球;对选项C,直接求出第一次摸到绿球且第二也摸到绿球的概率;对选项D,直接求出第一次摸到红球且第二也摸到红球的概率【详解】对选项A,第一次摸到绿球的概率为:,故错误;对选项B,第二次摸到绿球的概率为:,故错误;对选项C,两次都摸到绿球的概率为:,故正确;对选项D,两次都摸到红球的概率为:,故错误故选:C10、D【解析】根据垂直关系可得,由向量坐标运算可构造方程求得结果.【详解】,,又与互相垂直,,解得:.故选:D.11、C【解析】由,可求得,再由,利用基本不等式求出最小值即可.【详解】因为,所以,即,因为,,所以,当且仅当,即时等号成立,所以的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式求最值,考查学生的计算求解能力,属于中档题.12、D【解析】由命题为真命题,可判断二者至少有一个为真命题,由为假命题,可判断二者至少有一个为假命题,由此可得答案.【详解】命题为真命题,说明二者至少有一个为真命题,为假命题,说明二者至少有一个为假命题,综合上述,可知命题,只有一个是真命题,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】由题意,设所求直线方程为,根据两平行直线间的距离公式即可求解.【详解】解:由题意,设所求直线方程为,因为直线与直线的距离为,所以,解得或,所以所求直线方程为或,故答案为:或.14、##【解析】设出直线的方程,通过联立直线的方程和渐近线的方程,结合中点的坐标来求得直线的斜率.【详解】双曲线,,渐近线方程为,设直线的方程为,,由,由,所以,所以直线的斜率是.故答案为:15、①.##(0,1.5)②.【解析】由高线联立可得垂心,由垂心与重心可得欧拉线方程.【详解】由,可知边上的高所在的直线为,又,因此边上的高所在的直线的斜率为,所以边上的高所在的直线为:,即,所以,所以的垂心坐标为,由重心坐标公式可得的重心坐标为,所以的欧拉线方程为:,化简得.故答案为:;16、2π【解析】由圆锥的侧面积公式即可求解【详解】由题意,圆锥底面周长为2π×1=2π,又母线长为2,所以圆锥的侧面积故答案为:2π.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意作出图形,然后求出关于直线的对称点,进而根据圆的性质求出到圆上的点的最短距离即可;(2)将直线方程代入圆的方程并化简,进而结合韦达定理求得答案.【小问1详解】若军营所在区域为,圆:的圆心为原点,半径为,作图如下:设将军饮马点为,到达营区点为,设为A关于直线的对称点,因为,所以线段的中点为,则,又,联立解得:,即,所以总路程,要使得总路程最短,只需要最短,即点到圆上的点的最短距离,即为.【小问2详解】过点A倾斜角为45°的直线方程为:,设两个交点,联立,消去y得.由韦达定理,,.18、(1);(2)1【解析】(1)将问题转化为在内恒成立,求出的最小值,即可得到答案;(2)对函数求导得,由,即可得到答案;【详解】(1)依题意知,在内恒成立,所以在内恒成立,所以,因为的最小值为1,所以,所以实数m的取值范围是.(2),依题意有,即,,解得.19、(1)(2)等边三角形【解析】(1)把化为,然后由正弦定理化边为角,利用两角和的正弦公式、诱导公式可求得;(2)由余弦定理及三角形面积公式可得,从而得出三角形为等边三角形【小问1详解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小问2详解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以该三角形为等边三角形20、(1)(2)证明见解析【解析】(1)选①:直线与椭圆联立,利用判别式为0求解;选②:利用通径公式即可(2)用直线参数方程的几何意义求解【小问1详解】选①:由题知,过点且斜率为1的直线方程为联立,得由,得所以椭圆的方程为选②:由题知,所以由,得所以椭圆的方程为【小问2详解】证明:设直线的参数方程为(为参数)设A,B,H对应的参数分别为,显然将代入椭圆,得即.所以将代入直线,得由,得,所以由,得,所以所以所以为定值【点睛】关键点点睛:直线的参数方程作为一种工具,要充分发挥它的作用,参数的几何意义并不局限于加绝对值表示距离,还要注意方向性.请考生在22、23题中任选一题做答,如果多做,则按所做的第一题计分21、(1)证明见解析(2)【解析】(1)由水的体积得出,进而得出,,从而证明图2中的水面也是平行四边形;(2)在平面内,过点作,交于,由四边形是平行四边形,得出侧面与桌面所成的角即侧面与水面所成的角,再由直角三角形的边角关系得出其夹角.【小问1详解】由题意知,水的体积为,如图所示,设正方体水槽倾斜后,水面分别与棱,,,交于,,,,则,水的体积为,,即,,故四边形为平行四边形,即,且又,,,四边形为平行四边形,即图2中的水面也是平行四边形;【小问2详解】在平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年揭阳职业技术学院单招综合素质考试题库及参考答案详解一套
- 2025年吉安市第十二中学面向社会公开招聘编外工作人员考试核心题库及答案解析
- 2026年南通职业大学单招综合素质考试题库及参考答案详解
- 2026年川南幼儿师范高等专科学校单招职业倾向性考试题库及参考答案详解一套
- 2026年长春信息技术职业学院单招职业技能测试题库含答案详解
- 2026年山东职业学院单招职业倾向性测试题库及参考答案详解1套
- 2026年山东电子职业技术学院单招职业倾向性测试题库带答案详解
- 2026年辽源职业技术学院单招职业适应性测试题库含答案详解
- 2026年广安职业技术学院单招职业技能考试题库及参考答案详解一套
- 2026年湖南民族职业学院单招职业适应性测试题库及答案详解一套
- 2025年国考《行测》全真模拟试卷一及答案
- 国家开放大学2025年商务英语4综合测试答案
- 2025年国家开放大学《合同法》期末考试备考题库及答案解析
- 铝合金被动门窗施工方案
- 留置看护辅警相关刷题
- 交警辅警谈心谈话记录模板范文
- 基于SLP法的京东物流园3C类仓库布局优化研究
- 2025年《公差配合与技术测量》(习题答案)
- DB64-T 778-2024 苹果整形修剪技术规程
- 中铁快运物流
- 设备检修施工环保方案(3篇)
评论
0/150
提交评论