简谐运动的描述 课件(共24张)_第1页
简谐运动的描述 课件(共24张)_第2页
简谐运动的描述 课件(共24张)_第3页
简谐运动的描述 课件(共24张)_第4页
简谐运动的描述 课件(共24张)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章

机械振动第2节简谐运动的描述1.知道振幅、周期和频率的概念,知道全振动的含义;2.了解初相和相位差的概念,理解相位的物理意义;3.了解简谐运动位移方程中各参量的物理意义,会用数学表达式描述简谐运动。思考:做简谐运动的物体在一个位置附近不断地重复同样的运动。如何描述简谐运动的这种独特性呢?傅科摆:指仅受引力和吊线张力作用而在惯性空间固定平面内运动的摆。

振幅的两倍表示振动物体运动范围的大小振幅是标量

表示物体振动幅度大小的物理量米1.概念:2.意义:3.单位:知识点一:振幅M′MOx定义:如果从振动物体向右通过O的时刻开始计时,它将运动到M,然后向左回到O,又继续向左运动到达M′,之后又向右回到O。这样一个完整的振动过程称为一次全振动。M′OM1.全振动知识点二:周期和频率若从P0点向右运动开始计时,经历的一次全振动应为M′MOxP0注意:不管以哪里作为开始研究的起点。做简谐运动的物体完成一次全振动的时间总是相同的。M′O

M

若从M点运动开始计时,经历的一次全振动应为

M→O→M′→O→MP0→M→P0→O→M′→O→P0

2.周期:3.频率:

4.周期和频率的关系:

注意:周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,表示振动越快1、做简谐运动的物体,一个周期内,路程和振幅有什么定量关系?半个周期呢?2、同一个振动系统,弹簧振子的振动周期与振幅有关吗?

一个振动系统的周期有确定的值,由振动系统本身的性质决定,与振幅无关。

(1)ω是一个与周期成反比、与频率成正比的量,叫作简谐运动的“圆频率”;描述振动快慢的物理量。(2)ω越大,周期越短,频率越大,物体振动越快。5.圆频率试一试如图所示,为一个竖直方向振动的弹簧振子,O为静止时的位置,当把振子拉到下方的B位置后,从静止释放,振子将在BC之间做简谐运动,给你一个秒表,怎样测出振子的振动周期T?为了减小测量误差,采用累积法测振子的振动周期T,即用秒表测出发生n

次全振动所用的总时间t,可得周期为:T=t/n通过这个实验你能得出什么结论?视频:测量小球振动的周期通过这个实验发现,弹簧振子的振动周期与其振幅无关。注意:不仅弹簧振子的简谐运动,所有简谐运动的周期均与其振幅无关。把两个小球拉到相同的位置,先后放开两个小球,观察它们的振动有何不同?能否用之前学过的物理量来描述这种不同。实验现象:两小球不同时释放时,它们振幅和周期均相同,但是同一时刻两小球所处的位置不同,即偏离平衡位置的位移不同。

振动步调不一致需要引入新的物理量来描述振动的步调

表示物体振动步调的物理量,用相位来描述简谐运动在各个时刻所处的不同状态

1.概念:2.意义:3.特点:知识点三:相位

相位差是指两个相位之差,在实际应用中经常用到的是:两个具有相同频率的简谐运动的相位差值.

4.相位差:

对相位差的深度理解

意味着乙总是比甲滞后1/4个周期或1/4次全振动1、一个物体运动时其相位变化多少就意味着完成了一次全振动?相位每增加2π就意味着发生了一次全振动思考与讨论3、甲和乙两个简谐运动的相位差为3π/2,意味着什么?意味着乙总是比甲滞后3/4个周期或3/4次全振动简谐运动的描述描述简谐运动的物理量周期(T)振幅(A)频率(f)

1.一质点做简谐运动,其位移x与时间t的关系图像如图所示,由图可知()

C2.如图甲所示,弹簧振子以O点为平衡位置,在

A、B

两点之间做简谐运动。取向右为正方向,振子的位移

x

随时间

t

变化的图像如图乙所示,下列说法正确的是()A.该振子的振幅为24cmB.该振子的频率为1.6HzC.t=0.8s时,振子运动到

O

点,且加速度最大D.t=0.45s到

t=1.25s时间内,振子通过的路程为24cmD

CD

4.一水平弹簧振子做简谐运动的位移与时间的关系如图。求:(1)该简谐运动的周期和振幅;(2)该简谐运动的表达式;(3)t=0.25×10-2s时弹簧振子的小球的位移(计算结果保留3位有效数字)。解析:(1)根据图像,可知该简谐运动的周期

T=2×10-2s,振幅

A=2cm;(2)ω=

=100πrad/s,又因为

φ=

,或

φ=-

,所以简谐运动的表达式为x=2sin()cm或

x=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论