版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省保定市唐县第一中学高二上数学期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线交圆于A,B两点,若点满足,则直线l被圆C截得线段的长是()A.3 B.2C. D.42.如图,在棱长为的正方体中,为线段的中点,为线段的中点,则直线到直线的距离为()A. B.C. D.3.已知,满足,则的最小值为()A.5 B.-3C.-5 D.-94.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.5.已知等差数列{an}中,a4+a9=8,则S12=()A.96 B.48C.36 D.246.设平面的法向量为,平面的法向量为,若,则的值为()A.-5 B.-3C.1 D.77.如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为,的面积为,并向正方形中随机投掷个点,用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率为附表:A. B.C. D.8.丹麦数学家琴生(Jensen)是世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方面留下了很多宝贵的成果.设函数在上的导函数为,在上的导函数为,在上恒成立,则称函数在上为“凹函数”.则下列函数在上是“凹函数”的是()A. B.C. D.9.某次生物实验6个小组的耗材质量(单位:千克)分别为1.71,1.58,1.63,1.43,1.85,1.67,则这组数据的中位数是()A.1.63 B.1.67C.1.64 D.1.6510.已知函数,则等于()A.0 B.2C. D.11.双曲线:(,)的左、右焦点分别为、,点在双曲线上,,,则的离心率为()A. B.2C. D.12.椭圆的焦点坐标为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列的前项和为,则该数列的通项公式___________14.点P(8,1)平分椭圆x2+4y2=4的一条弦,则这条弦所在直线的方程是_______.15.已知数列前项和为,且,则_______.16.如图,用四种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法的种数为______(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为6.(1)求抛物线的方程;(2)若不过原点的直线与抛物线交于A、B两点,且,求证:直线过定点并求出定点坐标.18.(12分)如图四棱锥P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等边三角形.(1)设面PAB面PDC=l,证明:l//平面ABCD;(2)线段PC内是否存在一点E,使面ADE与面ABCD所成角的余弦值为,如果存在,求λ=的值,如果不存在,请说明理由.19.(12分)已知函数(1)求在点处的切线方程(2)求直线与曲线围成的封闭图形的面积20.(12分)在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.21.(12分)国家助学贷款由国家指定的商业银行面向在校全日制高等学校经济困难学生发放.用于帮助他们支付在校期间的学习和日常生活费.从年秋季学期起,全日制普通本专科学生每人每年申请贷款额度由不超过元提高至不超过元,助学贷款偿还本金的宽限期从年延长到年.假如学生甲在本科期间共申请到元的助学贷款,并承诺在毕业后年内还清,已知该学生毕业后立即参加工作,第一年的月工资为元,第个月开始,每个月工资比前一个月增加直到元,此后工资不再浮动.(1)学生甲参加工作后第几个月的月工资达到元;(2)如果学生甲从参加工作后的第一个月开始,每个月除了偿还应有的利息外,助学贷款的本金按如下规则偿还:前个月每个月偿还本金元,第个月开始到第个月每个月偿还的本金比前一个月多元,第个月偿还剩余的本金.则他第个月的工资是否足够偿还剩余的本金.(参考数据:;;)22.(10分)如图,在四棱锥中,平面平面ABCD,底面ABCD是矩形,,,直线PA与CD所成角为60°.(1)求直线PD与平面ABCD所成角的正弦值;(2)求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题设知为圆的圆心且A、B在圆上,根据已知及向量数量积的定义求的大小,进而判断△的形状,即可得直线l被圆C截得线段的长.【详解】∵点为圆的圆心且A、B在圆上,又,∴,∴,又,∴,故△为等边三角形,∴直线l被圆C截得线段的长是2故选:B2、C【解析】连接,,,,在平面中,作,为垂足,将两平行线的距离转化成点到直线的距离,结合余弦定理即同角三角函数基本关系,求得,因此可得,进而可得直线到直线的距离;【详解】解:如图,连接,,,,在平面中,作,为垂足,因为,分别为,的中点,因为,,所以,所以,同理,所以四边形是平行四边形,所以,所以即为直线到直线的距离,在三角形中,由余弦定理得因为,所以是锐角,所以,在直角三角形中,,故直线到直线的距离为;故选:C3、D【解析】作出可行域,作出目标函数对应的直线,平移该直线可得最优解【详解】解:作出可行域,如图内部(含边界),作直线,在中,,当直线向下平移时,增大,因此把直线向上平移,当直线过点时,故选:D4、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A5、B【解析】利用等差数列的性质求解即可.【详解】解:由等差数列的性质得.故选:B6、C【解析】根据,可知向量建立方程求解即可.【详解】由题意根据,可知向量,则有,解得.故选:C7、D【解析】每个点落入中的概率为,设落入中的点的数目为,题意所求概率为故选D8、B【解析】根据“凹函数”的定义逐项验证即可解出【详解】对A,,当时,,所以A错误;对B,,在上恒成立,所以B正确;对C,,,所以C错误;对D,,,因为,所以D错误故选:B9、D【解析】将已有数据从小到大排序,根据中位数的定义确定该组数据的中位数.【详解】由题设,将数据从小到大排序可得:,∴中位数为.故选:D.10、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.11、C【解析】根据双曲线定义、余弦定理,结合题意,求得关系,即可求得离心率.【详解】根据题意,作图如下:不妨设,则,,①;在△中,由余弦定理可得:,代值得:,②;联立①②两式可得:;在△和△中,由,可得:,整理得:,③;联立②③可得:,又,故可得:,则,则,故离心率为.故选:C.12、B【解析】根据方程可得,且焦点轴上,然后可得答案.【详解】由椭圆的方程可得,且焦点在轴上,所以,即,故焦点坐标为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据与关系求解即可.【详解】当时,,当时,,检验:,所以.故答案为:14、【解析】结合点差法求得正确答案.【详解】椭圆方程可化为,设是椭圆上的点,是弦的中点,则,两式相减并化简得,即,所以弦所在直线方程为,即.故答案为:15、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.16、48【解析】由已知按区域分四步,然后给,,,区域分步选择颜色,由此即可求解【详解】解:由已知按区域分四步:第一步区域有4种选择,第二步区域有3种选择,第三步区域有2种选择,第四步区域也有2种选择,则由分步计数原理可得共有种,故答案为:48三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析,定点坐标为(8,0).【解析】(1)根据抛物线的定义,即可求出结果;(2)由题意直线方程可设为,将其与抛物线方程联立,再将转化为,根据韦达定理,化简求解,即可求出定点.【小问1详解】解:抛物线的顶点在原点,焦点在轴上,且抛物线上有一点,设抛物线的方程为,到焦点的距离为6,即有点到准线的距离为6,即解得,即抛物线的标准方程为;【小问2详解】证明:由题意知直线不能与轴平行,故直线方程可设为,与抛物线联立得,消去得,设,则,则,,由,可得,所以,即,亦即,又,解得,所以直线方程为,易得直线过定点.18、(1)证明见解析(2)存在【解析】(1)由已知可得∥,再由线面平行的判定可得∥平面,再由线面平行的性质可得∥,再由线面平行的判定可得结论,(2)由已知条件可证得两两垂直,所以以为原点,所在的直线分别为轴建立空间直角坐标系,利用空间向量求解【小问1详解】证明:因为,所以,所以∥,因为平面,平面,所以∥平面,因为平面,且平面面,所以∥,因为平面,平面,所以∥平面,【小问2详解】设的中点为,因为△PDC是等边三角形,所以,因为平面PDC⊥平面ABCD,且平面面,所以平面,因为平面,所以,所以以为原点,所在的直线分别为轴建立空间直角坐标系,如图所示,则,所以,假设存在这样的点,由已知得,则,所以,因为平面,所以平面的一个法向量为,设平面的一个法向量为,则,令,则,则所以,整理得,解得(舍去),或,所以19、(1)(2)2【解析】(1)首先求出函数的导函数,即可求出切线的斜率,再利用点斜式求出切线方程;(2)首先求出两函数的交点坐标,再利用定积分及微积分基本定理计算可得;【小问1详解】解:因为,所以,所以切线的斜率,切线过点,切线的方程为,即【小问2详解】解:由题知,即解得或,即或或,直线与曲线于则所求图形的面积20、(1)(2)【解析】(1)先求出AB的斜率,再利用点斜式写出方程即可;(2)先求出,再求出C到AB的距离即可得到答案.【小问1详解】由已知,,所以直线的方程为,即.【小问2详解】,C到直线AB的距离为,所以的面积为.21、(1);(2)不能,理由见解析.【解析】(1)设甲参加工作后第个月的月工资达到元,根据已知条件可得出关于的不等式,结合参考数据可求得结果;(2)分析可知从第个月开始到第个月偿还的本金是首项为为首项,以为公差的等差数列,计算出甲前个月偿还的本金,再由甲第个月的工资可得出结论.【小问1详解】解:设甲参加工作后第个月的月工资达到元,则,可得,,解得,所以,学生甲参加工作后第个月的月工资达到元.【小问2详解】解:因为甲前个月每个月偿还本金元,第个月开始到第个月每个月偿还的本金比前一个月多元,所以,从第个月开始到第个月偿还的本金是首项为为首项,以为公差的等差数列,所以,前个月偿还的本金为,因为第个月开始,每个月工资比前一个月增加直到元,所以,第个月的工资为元,因为,因此,甲第个月的工资不能足够偿还剩余的本金.22、(1)(2)【解析】(1),所以PA与AB所成的锐角或直角等于PA与CD所成角,然后过P在平面PAB内作,可得平面ABCD,从而可求出答案.(2)可证平面PAB,过B在平面PAB内作,连结CF,则是二面角的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年舟山市文化和广电旅游体育局招聘编外工作人员备考题库及参考答案详解
- 衡水健康科技职业学院《中国近代史纲要》2023-2024学年第一学期期末试卷
- 厦门大学附属第一医院漳州招商局开发区分院2025年第四批公开招聘编外工作人员备考题库及参考答案详解1套
- 2025年阿勒泰地区吉木乃县应急管理局面向社会公开招聘政府专职消防员6人备考题库完整参考答案详解
- 2025-2026 学年高三 历史 期中复习卷 试卷及答案
- 2025年关于为山东铁路检察机关公开招聘聘用制书记员的备考题库完整参考答案详解
- 2025年建始县自然资源和规划局所属事业单位公开选聘工作人员备考题库参考答案详解
- 2025年凉山彝族自治州普格县公安局公开招聘警务辅助人员的备考题库及一套参考答案详解
- 2025年钦州市灵山生态环境局关于向社会公开招聘工作人员的备考题库及答案详解一套
- 伊朗暂停协议书
- 2025年国家开放大学(电大)《经济法》期末考试备考试题及答案解析
- 煤矿机电运输安全培训课件
- 老年病科护理组长岗位竞聘
- 养老护理员人际关系与沟通
- 安徽省2025年普通高中学业水平合格性考试英语考题及答案
- 2025-2030中国碘化铑行业需求潜力及产销规模预测报告
- 团员团课学习课件
- 食品安全许可证管理制度
- 烟花爆竹零售点考试题库及答案2025
- 农村环卫管理体系-洞察及研究
- 2025年高级(三级)焊接设备操作工职业技能鉴定《理论知识》考试真题(后附专业解析)
评论
0/150
提交评论