版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省盐城市盐都区时杨中学高二上数学期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是椭圆右焦点,点在椭圆上,线段与圆相切于点,且,则椭圆的离心率等于()A. B.C. D.2.已知圆:,点,则点到圆上点的最小距离为()A.1 B.2C. D.3.定义在R上的函数与函数在上具有相同的单调性,则k的取值范围是()A. B.C. D.4.已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为()A. B.C. D.5.设是等差数列的前项和,已知,,则等于()A. B.C. D.6.已知直线和圆相交于两点.若,则的值为()A. B.C. D.7.已知向量,,若,则()A.1 B.C. D.28.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④9.从全体三位正整数中任取一数,则此数以2为底的对数也是正整数的概率为()A. B.C. D.以上全不对10.已知双曲线的焦距为,且双曲线的一条渐近线与直线平行,则双曲线的方程为()A. B.C. D.11.已知,,若,则实数的值为()A. B.C. D.212.已知集合,,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平面的法向量为,平面的法向量为,若,则实数______14.棱长为的正方体的顶点到截面的距离等于__________.15.若和或都是假命题,则的范围是__________16.如图,已知与所在平面垂直,且,,,点P、Q分别在线段BD、CD上,沿直线PQ将向上翻折,使D与A重合.则直线AP与平面ACQ所成角的正弦值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.若图象上的点处的切线斜率为(1)求a,b的值;(2)的极值18.(12分)设命题p:实数x满足x≤2,或x>6,命题q:实数x满足x2﹣3ax+2a2<0(其中a>0)(1)若a=2,且为真命题,求实数x的取值范围;(2)若q是的充分不必要条件,求实数a的取值范围.19.(12分)已知函数(1)讨论函数的单调性;(2)证明:对任意正整数n,20.(12分)如下图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值21.(12分)人类社会正进入数字时代,网络成为了必不可少的工具,智能手机也给我们的生活带来了许多方便.但是这些方便、时尚的手机,却也让你的眼睛离健康越来越远.为了了解手机对视力的影响程度,某研究小组在经常使用手机的中学生中进行了随机调查,并对结果进行了换算,统计了中学生一个月中平均每天使用手机的时间x(小时)和视力损伤指数的数据如下表:平均每天使用手机的时间x(小时)1234567视力损伤指数y25812151923(1)根据表中数据,求y关于x的线性回归方程.(2)该小组研究得知:视力的下降值t与视力损伤指数y满足函数关系式,如果小明在一个月中平均每天使用9个小时手机,根据(1)中所建立的回归方程估计小明视力的下降值(结果保留一位小数).参考公式及数据:,..22.(10分)在等差数列中,,.(1)求数列通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】结合椭圆的定义、勾股定理列方程,化简求得,由此求得离心率.【详解】圆的圆心为,半径为.设左焦点为,连接,由于,所以,所以,所以,由于,所以,所以,,.故选:A2、C【解析】写出圆的圆心和半径,求出距离的最小值,再结合圆外一点到圆上点的距离最小值的方法即可求解.【详解】由圆:,得圆,半径为,所以,所以点到圆上点的最小距离为.故选:C.3、B【解析】判定函数单调性,再利用导数结合函数在的单调性列式计算作答.【详解】由函数得:,当且仅当时取“=”,则在R上单调递减,于是得函数在上单调递减,即,,即,而在上单调递减,当时,,则,所以k的取值范围是.故选:B4、B【解析】联立直线方程与椭圆方程,消y得到关于x的一元二次方程,根据韦达定理可得,进而得出中点的横坐标,代入直线方程求出中点的纵坐标即可.【详解】由题意知,,消去y,得,则,,所以A、B两点中点的横坐标为:,所以中点的纵坐标为:,即线段AB的中点的坐标为.故选:B5、C【解析】依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算6、C【解析】求出圆心到直线的距离,再利用,化简求值,即可得到答案.【详解】圆的圆心为,圆心到直线的距离公式为,故故选:C.7、B【解析】由向量平行,先求出的值,再由模长公式求解模长.【详解】由,则,即则,所以则故选:B8、C【解析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C9、B【解析】利用古典概型的概率求法求解.【详解】从全体三位正整数中任取一数共有900种取法,以2为底的对数也是正整数的三位数有,共3个,所以以此数以2为底的对数也是正整数的概率为,故选:B10、B【解析】根据焦点在x轴上的双曲线渐近线斜率为±可求a,b关系,再结合a,b,c关系即可求解﹒【详解】∵双曲线1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴双曲线的方程为故选:B11、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.12、B【解析】由交集定义直接求解即可.【详解】集合,,则.故选B.【点睛】本题主要考查了集合的交集运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题设可得,结合向量共线的坐标表示求参数即可.【详解】由题设,平面与平面的法向量共线,∴,则,即,解得.故答案为:.14、【解析】根据勾股定理可以计算出,这样得到是直角三角形,利用等体积法求出点到的距离.【详解】解:如图所示,在三棱锥中,是三棱锥的高,,在中,,,,所以是直角三角形,,设点到的距离为,.故A到平面的距离为故答案为:【点睛】本题考查了点到线的距离,利用等体积法求出点到面的距离.是解题的关键.15、【解析】先由和或都是假命题,求出x的范围,取交集即可.【详解】若为假命题,则有或若或是假命题,则所以的范围是即的范围是胡答案:16、##【解析】取的中点,的中点,以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系,设,根据求出,再由空间向量的数量积即可求解.【详解】取的中点,的中点,如图以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系,不妨设,则,,,由,即,解得,所以,故,设为平面ACQ的一个法向量,因为,,由,即,所以,设直线AP与平面ACQ所成角为,则.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)极大值为,极小值为【解析】(1)求出函数的导函数,再根据图象上的点处的切线斜率为,列出方程组,解之即可得解;(2)求出函数的导函数,根据导函数的符号求得函数的单调区间,再根据极值的定义即可得解.【小问1详解】解:,,;【小问2详解】解:由(1)得,令,得或,,-1(-1,3)3+0-0+的极大值为,极小值为.18、(1){x|2<x<4};(2).【解析】(1)分别求出命题和为真时对应的取值范围,即可求出;(2)由题可知,列出不等式组即可求解.【详解】解:(1)当a=2时,命题q:2<x<4,∵命题p:x≤2或x>6,,又为真命题,∴x满足,∴2<x<4,∴实数x的取值范围{x|2<x<4};(2)由题意得:命题q:a<x<2a;∵q是的充分不必要条件,,,解得,∴实数a的取值范围.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分又不必要条件,则对应的集合与对应集合互不包含19、(1)见解析(2)见解析【解析】(1)由,令,得,或,又的定义域为,讨论两个根及的大小关系,即可判定函数的单调性;(2)当时,在,上递减,则,即,由此能够证明【小问1详解】的定义域为,,令,得,或,①当,即时,若,则,递增;若,则,递减;②当,即时,若,则,递减;若,则,递增;若,则,递减;综上所述,当-2<a<0时,f(x)在,单调递减,在单调递增;当a≥0时,f(x)在单调递增,在单调递减.【小问2详解】由(2)知当时,在,上递减,,即,,,,2,3,,,,【点睛】本题考查利用导数研究函数的单调性,本题的关键是令a=1,用已知函数的单调性构造,再令x=恰当地利用对数求和进行解题20、(1);(2)证明见解析.【解析】(1)根据离心率为可得,把代入方程可得,又,解方程组即可求得方程;(2)设直线的方程为,整理方程组,求得,及参数的范围,由斜率公式表示出,结合直线方程和韦达定理整理即可得到定值.试题解析:(1)由题意,可得,代入得,又,解得,,所以椭圆的方程为.(2)证明:设直线的方程为,又,,三点不重合,∴,设,,由得,所以,解得,,①,②设直线,的斜率分别为,,则(),分别将①②式代入(),得,所以,即直线,的斜率之和为定值考点:椭圆的标准方程及直线与椭圆的位置关系.【方法点睛】本题主要考查了椭圆的标准方程及直线与椭圆的位置关系,考查了方程的思想和考试与运算能力,属于中档题.求椭圆方程通常用待定系数法,注意隐含条件;研究圆锥曲线中的定值问题,通常根据交点与方程组解得对应性,设而不解,表示出待求定值的表达式,利用韦达定理代入整理,消去参数即可得到定值.21、(1)(2)0.3【解析】(1)由表格数据及参考公式即可求解;(2)由(1)中线性回归方程计算小明的视力损伤指数,再将代入视力的下降值t与视
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山西华冶勘测工程技术有限公司公开招聘检测专业人才的备考题库及答案详解1套
- 2025年开封市事业单位公开引进高层次人才和急需短缺人才475人备考题库及一套参考答案详解
- 淮安市洪泽区中医院2025年公开招聘合同制专业技术人员备考题库(第二批)完整答案详解
- 铁塔设计考试试题及答案
- 中国铁路哈尔滨局集团有限公司2026年招聘普通高校本科及以上学历毕业生294人备考题库完整参考答案详解
- 2025年巴林右旗蒙医医院招聘备考题库及完整答案详解1套
- 2025年粤规资环碳能科技信息(广东)有限公司招5人备考题库及完整答案详解1套
- 2025年《中国邮政报》社有限公司公开招聘备考题库及参考答案详解1套
- 2025年陕西中放日昇科技产业发展有限公司公开招聘80人备考题库及1套完整答案详解
- 2025年温州大学国资处临聘工作人员招聘备考题库及一套完整答案详解
- 2024年北京广播电视台招聘真题
- 危险废物安全措施课件
- 形势与政策(吉林大学)单元测试(第11-25章)
- 2025版寄生虫病症状解析与护理方法探讨
- 2025年国家开放大学(电大)《物理化学》期末考试备考题库及答案解析
- 无领导小组讨论面试技巧与实战案例
- 2025年及未来5年中国养老产业行业发展趋势预测及投资规划研究报告
- 2025年中国办公楼租户调查分析报告
- 环保设备销售培训
- 髋臼骨折的护理课件
- 国际中文教育概论 课件 第12章 国际中文教育前瞻
评论
0/150
提交评论