版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省尚志中学2026届数学高一上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知方程的两根为与,则()A.1 B.2C.4 D.62.若命题:,则命题的否定为()A. B.C. D.3.若,,,则()A. B.C. D.4.若sinx<0,且sin(cosx)>0,则角是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角5.函数的部分图象如图示,则将的图象向右平移个单位后,得到的图象解析式为()A. B.C. D.6.函数,若恰有3个零点,则a的取值范围是()A. B.C. D.7.下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则8.某几何体的三视图如图所示(单位:cm),则该几何体的表面积为()A. B.C. D.9.设a>0且a≠1,则“函数fx=ax在R上是减函数”是“函数gxA.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.已知函数,则函数()A.有最小值 B.有最大值C.有最大值 D.没有最值二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,那么_________.12.已知向量,,,则=_____.13.空间直角坐标系中,点A(﹣1,0,1)到原点O的距离为_____14.的值为______.15.计算:______.16.如果在实数运算中定义新运算“”:当时,;当时,.那么函数的零点个数为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数(1)求实数k值;(2)设,证明:函数在上是减函数;(3)若函数,且在上只有一个零点,求实数m的取值范围18.如图,已知,分别是正方体的棱,的中点.求证:平面平面.19.已知.(1)若,,求x的值;(2)若,求的最大值和最小值.20.已知函数在一个周期内的图象如图所示(1)求的解析式;(2)直接写出在区间上的单调区间;(3)已知,都成立,直接写出一个满足题意的值21.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1,BD的中点(1)求证:EF∥平面ABD1;(2)AA1=,求异面直线EF与BC所成角的正弦值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【详解】显然方程有两个实数解,由题意,,所以故选:D2、D【解析】根据存在量词的否定是全称量词可得结果.【详解】根据存在量词的否定是全称量词可得命题的否定为.故选:D3、C【解析】先由,可得,结合,,可得,继而得到,,转化,利用两角差的正弦公式即得解【详解】由题意,故故又,故,则故选:C【点睛】本题考查了两角和与差的正弦公式、同角三角函数关系综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题4、D【解析】根据三角函数角的范围和符号之间的关系进行判断即可【详解】∵﹣1≤cosx≤1,且sin(cosx)>0,∴0<cosx≤1,又sinx<0,∴角x为第四象限角,故选D【点睛】本题主要考查三角函数中角的象限的确定,根据三角函数值的符号去判断象限是解决本题的关键5、D【解析】由图像知A="1,",,得,则图像向右移个单位后得到的图像解析式为,故选D6、B【解析】画出的图像后,数形结合解决函数零点个数问题.【详解】做出函数图像如下由得,由得故函数有3个零点若恰有3个零点,即函数与直线有三个交点,则a的取值范围,故选:B7、C【解析】分析】利用不等式性质逐一判断即可.【详解】选项A中,若,,则,若,,则,故错误;选项B中,取,满足,但,故错误;选项C中,若,则两边平方即得,故正确;选项D中,取,满足,但,故错误.故选:C.【点睛】本题考查了利用不等式性质判断大小,属于基础题.8、D【解析】借助正方体模型还原几何体,进而求解表面积即可.【详解】解:如图,在边长为的正方体模型中,将三视图还原成直观图为三棱锥,其中,均为直角三角形,为等边三角形,,所以该几何体的表面积为故选:D9、A【解析】函数f(x)=ax在R上是减函数,根据指数函数的单调性得出0<a<1;函数g(x)=(4-a)⋅x在R上是增函数,得出0<a<4且【详解】函数f(x)=ax在R上是减函数,则函数g(x)=(4-a)⋅x在R上是增函数,则4-a>0,而a>0且a≠1,解得:0<a<4且a≠1,故“函数fx=ax在R上是减函数”是“函数gx故选:A.10、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】首先根据分段函数求的值,再求的值.【详解】,所以.故答案为:312、【解析】先根据向量的减法运算求得,再根据向量垂直的坐标表示,可得关于的方程,解方程即可求得的值.【详解】因为向量,,所以则即解得故答案为:【点睛】本题考查了向量垂直的坐标关系,属于基础题.13、【解析】由空间两点的距离公式计算可得所求值.【详解】点到原点的距离为,故答案为:.【点睛】本题考查空间两点的距离公式的运用,考查运算能力,是一道基础题.14、【解析】利用对数恒等式直接求解.【详解】解:由对数恒等式知:=2故答案为2.【点睛】本题考查指数式、对数式化简求值,对数恒等式公式的合理运用,属于基础题.15、【解析】利用指数幂和对数的运算性质可计算出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题.16、【解析】化简函数的解析式,解方程,即可得解.【详解】当时,即当时,由,可得;当时,即当时,由,可得(舍).综上所述,函数的零点个数为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-1;(2)见解析;(3).【解析】(1)由于为奇函数,可得,即可得出;(2)利用对数函数的单调性和不等式的性质通过作差即可得出;(3)利用(2)函数的单调性、指数函数的单调性,以及零点存在性定理即可得出m取值范围【小问1详解】为奇函数,,即,,整理得,使无意义而舍去)【小问2详解】由(1),故,设,(a)(b)时,,,,(a)(b),在上时减函数;【小问3详解】由(2)知,h(x)在上单调递减,根据复合函数的单调性可知在递增,又∵y=在R上单调递增,在递增,在区间上只有一个零点,(4)(5)≤0,解得.18、见解析【解析】取的中点,连接、,则,进一步得到四边形为平行四边形,同理得到四边形为平行四边形,结合线面平行的判定即可得到结果.【详解】证明:取的中点,连接、.因为、分别为、的中点,.四边形为平行四边形..、分别为、的中点,∴,∴四边形为平行四边形,∴,∴.∵平面,平面,平面又,平面平面.【点睛】本题主要考查面面平行的判定,属于基础题型.19、(1)或;(2)的最大值和最小值分别为:,.【解析】(1)利用三角恒等变换化简函数,再利用给定的函数值及x的范围求解作答.(2)求出函数相位的范围,再结合正弦函数的性质计算作答.【小问1详解】依题意,,由,即得:,而,即,于是得或,解得或,所以x的值是或.【小问2详解】由(1)知,,当时,,则当,即时,,当,即时,,所以的最大值和最小值分别为:,.20、(1)(2)增区间为,减区间为(3)【解析】(1)根据图象确定周期可得出,再由图象过点求出即可得出解析式;(2)根据图象观察直接写出即可;(3)由知函数图象关于对称,由图象直接写即可.【小问1详解】由图可知,所以因,且,所以因为图象过点,所以所以所以所以因为,所以所以【小问2详解】在区间上,函数的增区间为,减区间为,【小问3详解】因为恒成立,所以函数图象关于对称,由图可知适合题意,(答案不唯一)21、(1)证明过程详见解析(2)【解析】(1)先证明EF∥D1B,即证EF∥平面ABD1.(2)先证明∠D1BC是异面直线EF与BC所成的角(或所成角的补角),再解三角形求其正弦值.【详解】(1)证明:连结BD1,在△DD1B中,E、F分别是D1D、DB的中点,∴EF是△DD1B的中位线,∴EF∥D1B,∵D1B⊂平面ABC1D1,EF平面ABD1,∴EF∥平面ABD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖南机电职业技术学院单招职业技能测试题库及参考答案详解一套
- 2026年河北青年管理干部学院单招职业倾向性考试题库含答案详解
- 2026年湖南外国语职业学院单招综合素质考试题库及参考答案详解
- 四川省成都市蓉城名校联盟2024-2025学年高二上学期期中考试政治考试政治参考答案及评分标准
- 云南税务面试题目及答案
- 安全攻防面试题及答案
- 2025~2026学年济南天桥区泺口实验学校九年级上学期12月份物理考试试卷以及答案
- 2019年7月国开电大行管专科《监督学》期末纸质考试试题及答案
- 质量检验员培训
- 2025年台州市中医院卫技高层次人才公开招聘备考题库及参考答案详解
- 大连市社区工作者管理办法
- 2025年河北地质大学公开招聘工作人员48名笔试模拟试题及答案解析
- 餐饮充值合同协议
- 火灾探测器的安装课件
- 酒店转让合同协议书范本大全
- DB21∕T 3722.3-2023 高标准农田建设指南 第3部分:项目预算定额
- 压力管道质量保证体系培训
- 2025年度数据中心基础设施建设及运维服务合同范本3篇
- 深圳大学《光学原理》2021-2022学年第一学期期末试卷
- 智能屋面状况监测与诊断
- 筋膜刀的临床应用
评论
0/150
提交评论