版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京西城八中少年班数学高二上期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.2.在中,,,,则此三角形()A.无解 B.一解C.两解 D.解的个数不确定3.已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为()A. B.C. D.4.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}5.下列结论中正确的个数为()①,;②;③A.0 B.1C.2 D.36.下列关于函数及其图象的说法正确的是()A.B.最小正周期为C.函数图象的对称中心为点D.函数图象的对称轴方程为7.已知等差数列前项和为,且,,则此数列中绝对值最小的项为A.第5项 B.第6项C.第7项 D.第8项8.数学家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知的三个顶点分别为,,,则的欧拉线方程是()A. B.C. D.9.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.210.给出命题:若函数是幂函数,则函数的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是()A.3 B.2C.1 D.011.在数列中,,,,则()A.2 B.C. D.112.已知“”的必要不充分条件是“或”,则实数的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列an满足,则__________14.设函数满足,则______.15.设等差数列的前项和为,且,,则__________.16.定义在R上的函数满足,其中为自然对数的底数,,则满足的a的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直三棱柱中,、、、分别为中点,.(1)求证:平面(2)求二面角的余弦值18.(12分)已知等差数列满足(1)求的通项公式;(2)设,求数列的前n项和19.(12分)已知数列,,,且,其中为常数(1)证明:;(2)是否存在,使得为等差数列?并说明理由20.(12分)已知曲线C的方程为(1)判断曲线C是什么曲线,并求其标准方程;(2)过点的直线l交曲线C于M,N两点,若点P为线段MN的中点,求直线l的方程21.(12分)某双曲线型自然冷却通风塔的外形是由图1中的双曲线的一部分绕其虚轴所在的直线旋转一周所形成的曲面,如图2所示.双曲线的左、右顶点分别为、.已知该冷却通风塔的最窄处是圆O,其半径为1;上口为圆,其半径为;下口为圆,其半径为;高(即圆与所在平面间的距离)为.(1)求此双曲线的方程;(2)以原平面直角坐标系的基础上,保持原点和x轴、y轴不变,建立空间直角坐标系,如图3所示.在上口圆上任取一点,在下口圆上任取一点.请给出、的值,并求出与的值;(3)在(2)的条件下,是否存在点P、Q,使得P、A、Q三点共线.若不存在,请说明理由;若存在,求出点P、Q的坐标,并证明此时线段PQ上任意一点都在曲面上.22.(10分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.2、C【解析】利用正弦定理求出的值,再根据所求值及a与b的大小关系即可判断作答.【详解】在中,,,,由正弦定理得,而为锐角,且,则或,所以有两解故选:C3、C【解析】当平面时,三棱锥体积最大,根据棱长与球半径关系即可求出球半径,从而求出表面积.【详解】当平面时,三棱锥体积最大.又,则三棱锥体积,解得;故表面积.故选:C.【点睛】关键点点睛:本题考查三棱锥与球的组合体的综合问题,本题的关键是判断当平面时,三棱锥体积最大.4、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.5、C【解析】构造函数利用导数说明函数的单调性,即可判断大小,从而得解;【详解】解:令,,则,所以在上单调递增,所以,即,即,,故①正确;令,,则,所以当时,,当时,,所以在上单调递减,在上单调递增,所以,即恒成立,所以,故②正确;令,,当时,当时,所以在上单调递减,在上单调递增,所以,即,所以,当且仅当时取等号,故③错误;故选:C6、D【解析】化简,利用正弦型函数的性质,依次判断,即可【详解】∵∴,A选项错误;的最小正周期为,B选项错误;令,则,故函数图象的对称中心为点,C选项错误;令,则,所以函数图象的对称轴方程为,D选项正确故选:D7、C【解析】设等差数列的首项为,公差为,,则,又,则,说明数列为递减数列,前6项为正,第7项及后面的项为负,又,则,则在数列中绝对值最小的项为,选C.8、B【解析】根据的三个顶点坐标,先求解出重心的坐标,然后再根据三个点坐标求解任意两条垂直平分线的方程,联立方程,即可算出外心的坐标,最后根据重心和外心的坐标使用点斜式写出直线方程.【详解】由题意可得的重心为.因为,,所以线段的垂直平分线的方程为.因为,,所以直线的斜率,线段的中点坐标为,则线段的垂直平分线的方程为.联立,解得,则的外心坐标为,故的欧拉线方程是,即故选:B.9、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.10、C【解析】若函数是幂函数,则函数的图象不过第四象限,原命题是真命题,则其逆否命题也是真命题;其逆命题为:若函数的图象不过第四象限,则函数是幂函数是假命题,所以原命题的否命题也是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.选C11、A【解析】根据题中条件,逐项计算,即可得出结果.【详解】因为,,,所以,因此.故选:A.12、A【解析】首先解不等式得到或,根据题意得到,再解不等式组即可.【详解】,解得或,因为“”的必要不充分条件是“或”,所以.实数的最小值为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2019【解析】将已知化为代入可以左右相消化简,将已知化为,代入可以上下相消化简,再全部代入求解即可.【详解】由知故所以故答案为:201914、5【解析】考点:函数导数与求值15、【解析】根据,利用等差数列前项和公式,列方程求出,再由,能求出【详解】等差数列的前项和为,且,,,解得,,,解得,故答案为:1016、【解析】设,求出其导数结合条件得出在上单调递减,将问题转化为求解,由的单调性可得答案.【详解】设,则由,则所以在上单调递减.又由,即,即,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)取中点,连接,根据直棱柱的特征,易知,再由、分别为的中点,根据中位线定理,可得,得到四边形为平行四边形,再利用线面平行的判定定理证明.(2)取的中点,连接,以为原点,、、分别为、、轴建立空间直角坐标系,则.,再分别求得平面和平面的一个法向量,利用面面角的向量公式求解.【详解】(1)证明:如图所示:取中点,连接,易知,、分别为的中点,∴,∴故四边形为平行四边形,∴,∵平面,平面,平面(2)取的中点,连接,以为原点,、、分别为、、轴建立如图所示的空间直角坐标系,如图所示:则∴,设平面的法向量为,则,即,取,得,易知平面的一个法向量为,∴,∴二面角的余弦值为【点睛】本题主要考查线面平行的判定定理和面面角的向量求法,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(1)(2)【解析】(1)设等差数列的公差为d,由题意得列出方程组,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比数列的定义,可证数列为等比数列,结合前n项和公式,即可得答案.【小问1详解】设等差数列的公差为d,由题意得,解得,所以通项公式【小问2详解】由(1)可得,,又,所以数列是以4为首项,4为公比的等比数列,所以19、(1)证明见解析(2)存在;理由见解析【解析】(1)由得两式相减可得答案;(2)利用得,可得,是首项为1,公差为4的等差数列,是首项为3,公差为4的等差数列,因此存在【小问1详解】由题设,,,两式相减得,,由于,所以【小问2详解】由题设,,,可得,由(1)知,.令,解得,故,由此可得,是首项为1,公差为4的等差数列,;又,同理,是首项为3,公差为4的等差数列,所以,所以.因此存在,使得为等差数列20、(1);(2).【解析】(1)根据椭圆的定义即可判断并求解;(2)根据点差法即可求解中点弦斜率和中点弦方程.【小问1详解】设,,E(x,y),∵,,且,点的轨迹是以,为焦点,长轴长为4的椭圆设椭圆C的方程为,记,则,,,,,曲线的标准方程为【小问2详解】根据椭圆对称性可知直线l斜率存在,设,则,由①-②得,,∴l:,即.21、(1);(2),,,;(3)存在,或,证明见解析.【解析】(1)设双曲线的标准方程为,易知,设,,代入求解即可;(2)分析圆,圆的方程即可求解;(3)利用圆的参数方程,设,,利用,即可求解,再利用线段PQ上任意一点的特征证明点在曲面上;【小问1详解】设双曲线的标准方程为,由题意知,点,的横坐标分别为,,则设点,的坐标为,,,,,解得,,又塔高米,,解得,故所求的双曲线的方程为【小问2详解】点在圆上,;点在圆上,;圆,其半径为,;圆,其半径为,【小问3详解】存在点P、Q,使得P、A、Q三点共线.由点在半径为的圆上,(为参数);点在半径为的圆上,(为参数);由已知得,整理得两式平方求和得,则或当时,,当时,证明:,则,利用,,其中又曲面上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年江苏食品药品职业技术学院单招综合素质考试题库及参考答案详解
- 2026年河北工业职业技术大学单招职业适应性测试题库及答案详解1套
- 2026年博尔塔拉职业技术学院单招职业适应性测试题库及参考答案详解1套
- 2026年郑州理工职业学院单招职业倾向性考试题库附答案详解
- 2026年天津财经大学珠江学院单招职业技能考试题库含答案详解
- 2026年自贡职业技术学院单招职业技能测试题库参考答案详解
- 2026年青海省海西蒙古族藏族自治州单招职业倾向性测试题库及参考答案详解
- 2026年江苏信息职业技术学院单招职业适应性考试题库含答案详解
- 2026年杭州万向职业技术学院单招职业适应性考试题库附答案详解
- 2026年湖南电气职业技术学院单招职业倾向性考试题库及参考答案详解一套
- 乳房旋切术后护理
- 高中化学-常见晶胞模型
- 模拟电子技术基础-华中科技大学中国大学mooc课后章节答案期末考试题库2023年
- 辅助生殖技术及护理人工授精
- 把未来点亮歌词打印版
- 华南理工大学模拟电子技术基础试卷及答案
- GB/T 18369-2022玻璃纤维无捻粗纱
- GB/T 14048.17-2008低压开关设备和控制设备第5-4部分:控制电路电器和开关元件小容量触头的性能评定方法特殊试验
- GB/T 10067.33-2014电热装置基本技术条件第33部分:工频无心感应熔铜炉
- 学生记分册(通用模板)
- 提高住院部医生交接班制度落实率pdca
评论
0/150
提交评论