广东省深圳高级中学2026届数学高二上期末复习检测试题含解析_第1页
广东省深圳高级中学2026届数学高二上期末复习检测试题含解析_第2页
广东省深圳高级中学2026届数学高二上期末复习检测试题含解析_第3页
广东省深圳高级中学2026届数学高二上期末复习检测试题含解析_第4页
广东省深圳高级中学2026届数学高二上期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳高级中学2026届数学高二上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知在四棱锥中,平面,底面是边长为4的正方形,,E为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.2.过点且与椭圆有相同焦点的双曲线方程为()A B.C. D.3.七巧板是中国古代劳动人民发明的一种传统智力玩具,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中随机地取一点,则该点恰好取自白色部分的概率为()A. B.C. D.4.南宋数学家杨辉在《详解九章算术法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23,则该数列的第31项为()A.336 B.467C.483 D.6015.已知椭圆的左、右焦点分别为,,点P是椭圆上一点且的最大值为,则椭圆离心率为()A. B.C. D.6.已知向量,,且,则的值是()A. B.C. D.7.已知函数有两个极值点m,n,且,则的最大值为()A. B.C. D.8.已知等差数列的前项和为,且,,则()A.3 B.5C.6 D.109.等差数列中,已知,则()A.36 B.27C.18 D.910.命题“对任意,都有”的否定是()A.对任意,都有 B.存在,使得C.对任意,都有 D.存在,使得11.已知函数在处取得极值,则()A. B.C. D.12.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线:,,是其左右焦点.圆:,点为双曲线右支上的动点,点为圆上的动点,则的最小值是________.14.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折次,那么______.15.一个六棱锥的体积为,其底面是边长为的正六边形,侧棱长都相等,则该六棱锥的侧面积为.16.如图,用四种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法的种数为______(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆)过点A(0,),且与双曲线有相同的焦点(1)求椭圆C的方程;(2)设M,N是椭圆C上异于A的两点,且满足,试判断直线MN是否过定点,并说明理由18.(12分)已知函数(其中为自然对数底数)(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.19.(12分)命题p:关于x的不等式对一切恒成立;命题q:函数在上递增,若为真,而为假,求实数的取值范围20.(12分)已知数列是正项数列,,且.(1)求数列的通项公式;(2)设,数列的前项和为,若对恒成立,求实数的取值范围.21.(12分)已知抛物线的顶点是坐标原点,焦点在轴的正半轴上,是抛物线上的点,点到焦点的距离为1,且到轴的距离是(1)求抛物线的标准方程;(2)假设直线通过点,与抛物线相交于,两点,且,求直线的方程22.(10分)已知△ABC的内角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△ABC面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系,以向量法去求直线与平面所成角的正弦值即可.【详解】平面,底面是边长为4的正方形,则有,而,故平面,以A为原点,分别以AB、AD、AP所在直线为x轴、y轴、z轴建立空间直角坐标系如图:则,,,设直线与平面所成角为,又由题可知为平面的一个法向量,则故选:B2、D【解析】设双曲线的方程为,再代点解方程即得解.【详解】解:由得,所以椭圆的焦点为.设双曲线的方程为,因为双曲线过点,所以.所以双曲线的方程为.故选:D3、A【解析】设七巧板正方形边长为4,求出阴影部分的面积,再利用几何概型概率公式计算作答.【详解】设七巧板正方形边长为4,则大阴影等腰三角形底边长为4,底边上的高为2,可得小正方形对角线长为2,小正方形边长为,小阴影等腰直角三角形腰长为,小白色等腰直角三角形底边长为2,则左上角阴影等腰直角三角形腰长为2,因此,图中阴影部分面积,而七巧板正方形面积,于是得七巧板中白色部分面积为,所以在此正方形中随机地取一点,则该点恰好取自白色部分的概率为.故选:A4、B【解析】先由递推关系利用累加法求出通项公式,直接带入即可求得.【详解】根据题意,数列2,3,5,8,12,17,23……满足,,所以该数列的第31项为.故选:B5、A【解析】根据椭圆的定义可得,从而得到,则,其中,再根据对勾函数的性质求出,即可得到方程,从求出椭圆的离心率;【详解】解:依题意,所以,又,所以,因为在上单调递减,所以当时函数取得最大值,即,即所以,即,所以,解得或(舍去)故选:A6、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.7、C【解析】对求导得,得到m,n是两个根,由根与系数的关系可得m,n的关系,然后构造函数,利用导数求单调性,进而得最值.【详解】由得:m,n是两个根,由根与系数的关系得:,故,令记,则,故在上单调递减.故选:C8、B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.9、B【解析】直接利用等差数列的求和公式及等差数列的性质求解.【详解】解:由题得.故选:B10、B【解析】根据全称命题的否定是特称命题形式,可判断正确答案.【详解】因为全称命题的否定是特称命题,所以命题“对任意,都有”的否定是“存在,使得”故选:B.11、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B12、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用双曲线定义,将的最小值问题转化为的最小值问题,然后结合图形可解.【详解】由题设知,,,,圆的半径由点为双曲线右支上的动点知∴∴.故答案为:14、①.5②.【解析】(1)按对折列举即可;(2)根据规律可得,再根据错位相减法得结果.【详解】(1)由对折2次共可以得到,,三种规格的图形,所以对着三次的结果有:,共4种不同规格(单位;故对折4次可得到如下规格:,,,,,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为的等比数列,首项为120,第n次对折后的图形面积为,对于第n此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为种(证明从略),故得猜想,设,则,两式作差得:,因此,.故答案为:;.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;(3)对于结构,利用分组求和法;(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.解答题15、【解析】判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积∵一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则棱锥斜高为该六棱锥的侧面积为考点:棱柱、棱锥、棱台的体积16、48【解析】由已知按区域分四步,然后给,,,区域分步选择颜色,由此即可求解【详解】解:由已知按区域分四步:第一步区域有4种选择,第二步区域有3种选择,第三步区域有2种选择,第四步区域也有2种选择,则由分步计数原理可得共有种,故答案为:48三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线过定点;理由见解析【解析】(1)根据题意可求得,进而求得椭圆方程;(2)考虑直线斜率是否存在,设直线方程并联立椭圆方程,得到根与系数的关系式,然后利用,将根与系数的关系式代入化简得到,结合直线方程,化简可得结论.【小问1详解】依题意,,所以,故椭圆方程为:【小问2详解】当直线MN的斜率不存在时,设M(),N(,),则,,此时M,N重合,不符合题意;当直线MN的斜率存在时,设MN的方程为:,M(,),N(),与椭圆方程联立可得:,即,∴,即,∴,∴,∴,当时,,直线MN:,即,令,则,∴直线过定点【点睛】本题考查了椭圆方程的求法以及直线和椭圆相交时过定点的问题,解答时要注意解题思路的顺畅,解答的难点在于运算量较大且复杂,需要十分细心.18、(1)答案见解析(2)【解析】(1),进而分,,三种情况讨论求解即可;(2)由题意知在上恒成立,故令,再根据导数研究函数的最小值,注意到使,进而结合函数隐零点求解即可.【小问1详解】解:①,在上单调增;②,令,单调减单调增;③,单调增单调减.综上,当时,在上单调增;当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】解:由题意知在上恒成立,令,,单调递增∵,∴使得,即单调递减;单调递增,令,则在上单调增,∴实数的取值范围是19、【解析】依题意,可分别求得p真、q真时m的取值范围,再由p∨q为真,而p∧q为假求得实数a的取值范围即可【详解】命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;①若命题p正确,则△=(2a)2﹣42<0,即﹣2<a<2;②命题q:函数f(x)=logax在(0,+∞)上递增⇒a>1,∵p∨q为真,而p∧q为假,∴p、q一真一假,当p真q假时,有,∴﹣2<a≤1;当p假q真时,有,∴a≥2∴综上所述,﹣2<a≤1或a≥2即实数a的取值范围为(﹣2,1]∪[2,+∞)【点睛】本题考查复合命题的真假,分别求得p真、q真时m的取值范围是关键,考查理解与运算能力,属于中档题20、(1)(2)【解析】(1)由条件因式分解可得,从而得到,即可得出答案.(2)由(1)可得,由错位相减法求和得到,由题意即即对恒成立,分析数列的单调性,得出答案.【小问1详解】由,得∵∴∴∴数列是公比为2的等比数列.∵,∴.【小问2详解】由(1)知,∴∴①∴②①-②得∴∴由对恒成立得对恒成立即对恒成立,又是递减数列∴时得到最大值∴,即∴的取值范围是.21、(1);(2)【解析】(1)根据抛物线的定义,结合到焦点、轴的距离求,写出抛物线方程.(2)直线的斜率不存在易得与不垂直与题设矛盾,设直线方程联立抛物线方程,应用韦达定理求,,进而求,由题设向量垂直的坐标表示有求直线方程即可.【详解】(1)由己知,可设抛物线的方程为,又到焦点的距离是1,∴点到准线的距离是1,又到轴的距离是,∴,解得,则抛物线方程是(2)假设直线的斜率不存在,则直线的方程为,与联立可得交点、的坐标分别为,,易得,可知直线与直线不垂直,不满足题意,故假设不成立,∴直线的斜率存在.设直线为,整理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论