江苏省六校联盟2026届数学高一上期末监测试题含解析_第1页
江苏省六校联盟2026届数学高一上期末监测试题含解析_第2页
江苏省六校联盟2026届数学高一上期末监测试题含解析_第3页
江苏省六校联盟2026届数学高一上期末监测试题含解析_第4页
江苏省六校联盟2026届数学高一上期末监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省六校联盟2026届数学高一上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.当时,在同一平面直角坐标系中,与的图象是()A. B.C. D.2.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p33.下列所给出的函数中,是幂函数的是A. B.C. D.4.已知,则的值是A.1 B.3C. D.5.已知函数,,的零点分别,,,则,,的大小关系为()A. B.C. D.6.函数的最小值和最大值分别为()A. B.C. D.7.函数与(且)在同一坐标系中的图象可能是()A. B.C. D.8.某空间几何体的正视图是三角形,则该几何体不可能是A.圆柱 B.圆锥C.四面体 D.三棱柱9.下列各式中成立的是A. B.C. D.10.下列四组函数中,表示同一个函数的一组是()A.,B.,C.,D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知关于x的不等式的解集为,则的解集为_________12.已知函数,分别是定义在R上的偶函数和奇函数,且满足,则函数的解析式为____________________;若函数有唯一零点,则实数的值为____________________13.已知(其中且为常数)有两个零点,则实数的取值范围是___________.14.已知是定义在R上的周期为2的奇函数,当时,,则___________.15.已知,则__________.16.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)化简;(2)若,求的值18.已知函数,(1)若,求的单调区间;(2)若有最大值3,求实数的值.19.已知向量,1若

,共线,求x的值;2若,求x的值;3当时,求与夹角的余弦值20.如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是用宽(单位)表示所建造的每间熊猫居室的面积(单位);怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?21.已知函数,且.(1)求函数的定义域,并判断函数的奇偶性.(2)求满足的实数x的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由定义域和,使用排除法可得.【详解】的定义域为,故AD错误;BC中,又因为,所以,故C错误,B正确.故选:B2、A【解析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【详解】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.3、B【解析】根据幂函数的定义,直接判定选项的正误,推出正确结论【详解】幂函数的定义规定;y=xa(a为常数)为幂函数,所以选项中A,C,D不正确;B正确;故选B【点睛】本题考查幂函数的定义,考查判断推理能力,基本知识掌握情况,是基础题4、D【解析】由题意结合对数的运算法则确定的值即可.【详解】由题意可得:,则本题选择D选项.【点睛】本题主要考查指数对数互化,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.5、A【解析】判断出三个函数的单调性,可求出,,并判断,进而可得到答案【详解】因为在上递增,当时,,所以;因为在上递增,当时,恒成立,故的零点小于0,即;因为在上递增,当时,,故,故.故选:A.6、C【解析】2.∴当时,,当时,,故选C.7、B【解析】分析一次函数的单调性,可判断AD选项,然后由指数函数的单调性求得的范围,结合直线与轴的交点与点的位置关系可得出合适的选项.【详解】因为一次函数为直线,且函数单调递增,排除AD选项.对于B选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的上方,合乎题意;对于C选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的下方,不合乎题意.故选:B.8、A【解析】因为圆柱的三视图有两个矩形,一个圆,正视图不可能是三角形,而圆锥、四面体(三棱锥)、三棱柱的正视图都有可能是三角形,所以选A.考点:空间几何体的三视图.9、D【解析】根据指数运算法则分别验证各个选项即可得到结果.【详解】中,中,,中,;且等式不满足指数运算法则,错误;中,,错误;中,,则,错误;中,,正确.故选:【点睛】本题考查指数运算法则的应用,属于基础题.10、B【解析】根据相等函数的判定方法,逐项判断,即可得出结果.【详解】A选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故A错;B选项,因为的定义域为,的定义域也为,且与对应关系一致,是同一函数,故B正确;C选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故C错;D选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故D错.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】由已知条件知,结合根与系数关系可得,代入化简后求解,即可得出结论.【详解】关于x的不等式的解集为,可得,方程的两根为,∴,所以,代入得,,即,解得或.故答案为:或.【点睛】本题考查一元二次不等式与一元二次方程的关系,以及解一元二次不等式,属于基础题.易错点是忽视对的符号的判断.12、(1).(2).或【解析】把方程中的换成,然后利用奇偶性可得另一方程,联立可解得;令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值【详解】解:因为函数,分别是定义在上的偶函数和奇函数,所以,因为,①所以,即,②①②联立,可解得令,则,所以为偶函数,所以关于对称,因为有唯一的零点,所以的零点只能为,即,解得或故答案为:;或【点睛】关键点点睛:此题考查函数奇偶性的应用,考查函数的零点,解题的关键是令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值,考查数学转化思想和计算能力,属于中档题13、【解析】设,可转化为有两个正解,进而可得参数范围.【详解】设,由有两个零点,即方程有两个正解,所以,解得,即,故答案为:.14、##【解析】根据函数的周期和奇偶性即可求得答案.【详解】因为函数的周期为2的奇函数,所以.故答案为:.15、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:316、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】(1)根据诱导公式及同角关系式化简即得;(2)根据可知,从而求得结果.【小问1详解】由诱导公式可得:;【小问2详解】由于,有,得,,可得故值为.18、(1)递减区间为,递增区间;(2).【解析】(1)当时,设,根据指数函数和二次函数的单调性,结合复合函数的单调性,即可求解;(2)由题意,函数,分,和三种情况讨论,结合复合函数的单调性,即可求解.【详解】(1)当时,,设,则函数开口向下,对称轴方程为,所以函数在单调递增,在单调递减,又由指数函数在上为单调递减函数,根据复合函数的单调性,可得函数在单调递减,在单调递增,即函数的递减区间为,递增区间.(2)由题意,函数,①当时,函数,根据复合函数的单调性,可得函数在上为单调递增函数,此时函数无最大值,不符合题意;②当时,函数,根据复合函数单调性,可得函数在在单调递增,在单调递减,当时,函数取得最大值,即,解得;③当时,函数,根据复合函数的单调性,可得函数在在单调递减,在单调递增,此时函数无最大值,不符合题意.综上可得,实数的值为.【点睛】本题主要考查了指数函数的图象与性质,以及复合函数的单调性的判定及应用,其中解答中熟记指数函数的图象与性质,二次函数的性质,以及复合函数的单调性的判定方法是解答的关键,着重考查推理与运算能力,属于中档试题.19、(1);(2);(3)【解析】(1)根据题意,由向量平行的坐标公式可得,解可得的值,即可得答案;(2)若,则有,利用数量积的坐标运算列方程,解得的值即可;(3)根据题意,由的值可得的坐标,由向量的坐标计算公式可得和的值,结合,计算可得答案【详解】根据题意,向量,,若,则有,解可得若,则有,又由向量,,则有,即,解可得.根据题意,若,则有,,【点睛】本题主要考查两个向量共线、垂直的性质,两个向量坐标形式的运算,两个向量夹角公式的应用,属于中档题20、(1)(2)使每间熊猫居室的宽为,每间居室的长为15m时所建造的每间熊猫居室面积最大;每间熊猫居室的最大面积为150【解析】(1)根据周长求出居室的长,再根据矩形面积公式得函数关系式,最后根据实际意义确定定义域(2)根据对称轴与定义区间位置关系确定最值取法:在对称轴处取最大值试题解析:解:(1)设熊猫居室的宽为(单位),由于可供建造围墙的材料总长是,则每间熊猫居室的长为(单位m)所以每间熊猫居室的面积又得(2)二次函数图象开口向下,对称轴且,当时,,所以使每间熊猫居室的宽为,每间居室的长为15m时所建造的每间熊猫居室面积最大;每间熊猫居室的最大面积为150点睛:在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论