云南省安宁市实验石江学校2026届高二数学第一学期期末监测模拟试题含解析_第1页
云南省安宁市实验石江学校2026届高二数学第一学期期末监测模拟试题含解析_第2页
云南省安宁市实验石江学校2026届高二数学第一学期期末监测模拟试题含解析_第3页
云南省安宁市实验石江学校2026届高二数学第一学期期末监测模拟试题含解析_第4页
云南省安宁市实验石江学校2026届高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省安宁市实验石江学校2026届高二数学第一学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为()A.=1 B.=1C.=1 D.=12.某校去年有1100名同学参加高考,从中随机抽取50名同学总成绩进行分析,在这个调查中,下列叙述错误的是A.总体是:1100名同学的总成绩 B.个体是:每一名同学C.样本是:50名同学的总成绩 D.样本容量是:503.已知圆与圆,则两圆的位置关系是()A.外切 B.内切C.相交 D.相离4.已知向量,,则()A. B.C. D.5.已知1与5的等差中项是,又1,,,8成等比数列,公比为,则的值为()A.5 B.4C.3 D.66.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块7.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希腊西西里岛叙拉古(今意大利西西里岛上),伟大的古希腊数学家、物理学家,与高斯、牛顿并称为世界三大数学家.有一类三角形叫做阿基米德三角形(过抛物线的弦与过弦端点的两切线所围成的三角形),他利用“通近法”得到抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的(即右图中阴影部分面积等于面积的).若抛物线方程为,且直线与抛物线围成封闭图形的面积为6,则()A.1 B.2C. D.38.某工厂去年的电力消耗为千瓦,由于设各更新,该工厂计划每年比上一年的电力消耗减少,则从今年起,该工厂第5年消耗的电力为()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦9.若抛物线的焦点与椭圆的下焦点重合,则m的值为()A.4 B.2C. D.10.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.11.如图所示,正方形边长为2cm,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.16cm B.cmC.8cm D.cm12.椭圆的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知命题“,”为假命题,则实数m的取值范围为______14.设数列满足且,则________.数列的通项=________.15.射击队某选手命中环数的概率如下表所示:命中环数10987概率0.320.280.180.120.1该选手射击两次,两次命中环数相互独立,则他至少命中一次9环或10环的概率为_________________.(结果用小数表示)16.已知,,,,使得成立,则实数a的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求函数的极值;(2)当时,若恒成立,求实数a的取值范围18.(12分)已知双曲线,抛物线的焦点与双曲线的一个焦点相同,点为抛物线上一点.(1)求双曲线的焦点坐标;(2)若点到抛物线的焦点的距离是5,求的值.19.(12分)已知直线与抛物线交于两点(1)若,直线过抛物线的焦点,线段中点的纵坐标为2,求的长;(2)若交于,求的值20.(12分)已知数列的前项和为,且.数列是等比数列,,(1)求,的通项公式;(2)求数列的前项和21.(12分)将离心率相同的两个椭圆如下放置,可以形成一个对称性很强的几何图形,现已知.(1)若在第一象限内公共点的横坐标为1,求的标准方程;(2)假设一条斜率为正的直线与依次切于两点,与轴正半轴交于点,试求的最大值及此时的标准方程.22.(10分)长方体中,,点分别在上,且.(1)求证:平面;(2)求平面与平面所成角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据双曲线的性质求解即可.【详解】双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,可得a=4,b=5,所以双曲线方程为:=1.故选:D.2、B【解析】采用逐一验证法,根据总体,个体,样本的概念,可得结果.【详解】据题意:总体是1100名同学的总成绩,故A正确个体是每名同学的总成绩,故B错样本是50名同学的总成绩,故C正确样本容量是:50,故D正确故选:B【点睛】本题考查总体,个体,样本的概念,属基础题.3、A【解析】求得两圆的圆心和半径,再根据圆心距与半径之和半径之差的关系,即可判断位置关系.【详解】对圆,其圆心,半径;对圆,其圆心,半径;又,故两圆外切.故选:A.4、D【解析】按空间向量的坐标运算法则运算即可.【详解】.故选:D.5、A【解析】由等差中项的概念列式求得值,再由等比数列的通项公式列式求解,则答案可求.【详解】由题意,,则;又1,,,8成等比数列,公比为,,即,,故选:.6、C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.7、D【解析】根据题目所给条件可得阿基米德三角形的面积,再利用三角形面积公式即可求解.【详解】由题意可知,当过焦点的弦垂直于x轴时,即时,,即,故选:D8、D【解析】根据等比数列的定义进行求解即可.【详解】因为去年的电力消耗为千瓦,工厂计划每年比上一年的电力消耗减少,所以今年的电力消耗为,因此从今年起,该工厂第5年消耗的电力为,故选:D9、D【解析】求出椭圆的下焦点,即抛物线的焦点,即可得解.【详解】解:椭圆的下焦点为,即为抛物线焦点,∴,∴.故选:D.10、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.11、A【解析】由直观图确定原图形中平行四边形中线段的长度与关系,然后计算可得【详解】由斜二测画法,原图形是平行四边形,,又,,,所以,周长为故选:A12、B【解析】根据题意,椭圆的标准方程为,其中则,则有|F1F2|=2,若a=3,则|PF1|+|PF2|=2a=6,又由|PF1|=4,则|PF2|=6-|PF1|=2,则cos∠F1PF2==.故选B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据命题的否定与原命题真假性相反,即可得到,为真命题,则,从而求出参数的取值范围;【详解】解:因为命题“,”为假命题,所以命题“,”为真命题,所以,解得;故答案:14、①.5②.【解析】设,根据题意得到数列是等差数列,求得,得到,利用,结合“累加法”,即可求得.【详解】解:由题意,数列满足,所以当时,,,解得,设,则,且,所以数列是等差数列,公差为,首项为,所以,即,所以,当时,可得,其中也满足,所以数列的通项公式为.故答案为:;.15、84【解析】先求出该选手射击两次,两次命中的环数都低于9环的概率,由对立事件的概率可得答案.【详解】该选手射击一次,命中的环数低于9环的概率为该选手射击两次,两次命中的环数都低于9环的概率为所以他至少命中一次9环或10环的概率为故答案:0.8416、【解析】由题可得,求导可得的单调性,将的最小值代入,即得.【详解】∵,,使得成立,∴由,得,当时,,∴在区间上单调递减,在区间上单调递增,∴函数在区间上的最小值为又在上单调递增,∴函数在区间上的最小值为,∴,即实数的取值范围是故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极大值;极小值(2)【解析】(1)利用导数来求得的极大值和极小值.(2)由不等式分离常数,通过构造函数法,结合导数来求得的取值范围.【小问1详解】当时,,,令,可得或2所以在区间递增;在区间递减.故当时.函数有极大值,故当时,函数有极小值;【小问2详解】由,有,可化为,令,有,令,有,令,可得,可得函数的增区间为,减区间为,有,可知,有函数为减函数,有,故当时,若恒成立,则实数a的取值范围为【点睛】求解不等式恒成立问题,可利用分离常数法,结合导数求最值来求解.在利用导数研究函数的过程中,如果一阶导数无法解决,可考虑利用二阶导数来进行求解.18、(1);(2).【解析】(1)根据双曲线的方程求出即得双曲线的焦点坐标;(2)先求出的值,再解方程得解.【详解】(1)因为双曲线的方程为,所以.所以.所以.所以双曲线的焦点坐标分别为.(2)因为抛物线的焦点与双曲线的一个焦点相同,所以抛物线的焦点坐标是(2,0),所以.因为点为抛物线上一点,所以点到抛物线的焦点的距离等于点到抛物线的准线的距离.因为点到拋物线的焦点的距离是5,即,所以.【点睛】本题主要考查双曲线的焦点坐标的求法,考查抛物线的定义和几何性质,意在考查学生对这些知识的理解掌握水平.19、(1)6(2)2【解析】(1)通过作辅助线,利用抛物线定义,结合梯形的中位线定理,可求得答案;(2)根据题意可求得直线AB的方程为y=x+4,联立抛物线方程,得到根与系数的关系,由OA⊥OB,得,根据数量积的计算即可得答案.【小问1详解】取AB的中点为E,当p=2时,抛物线为C:x2=4y,焦点F坐标为F(0,1),过A,E,B分别作准线y=-1的垂线,重足分别为I,H,G,在梯形ABGI中(图1),E是AB中点,则2EH=AI+BG,EH=2-(-1)=3,因为AB=AF+BF=AI+BG,所以AB=2EH=6.【小问2详解】设,由OD⊥AB交AB于D(-2,2),(图2),得kOD=-1,kAB=1,则直线AB的方程为y=x+4,由得,所以,由,得,即,即,可得,即,所以p=2.20、(1),(2)【解析】(1)利用求出通项公式,根据已知求出公比即可得出的通项公式;(2)利用错位相减法可求解.【小问1详解】因为数列的前项和为,且,当时,,当时,,满足,所以,设等比数列的公比为,因为,,所以,解得,所以;【小问2详解】因为,,则,两式相减得,所以.21、(1)(2);【解析】(1)设,将点代入得出的标准方程;(2)联立与直线的方程,得出两点的坐标,进而得出,再结合导数得出的最大值及此时的标准方程.【小问1详解】由题意得:在第一象限的公共点为设,则有:的标准方程为:;【小问2详解】设y=kx+m则①,则②,,,又,由①有代入①有,令,则令,在单调递增,在单调递减,此时,则,代入②得,综上:的最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论