版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届内蒙古巴彦淖尔第一中学高二数学第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A. B.C. D.2.已知函数的导函数的图像如图所示,则下列说法正确的是()A.是函数的极大值点B.函数在区间上单调递增C.是函数的最小值点D.曲线在处切线的斜率小于零3.方程表示的曲线为焦点在y轴上的椭圆,则k的取值范围是()A. B.C.或 D.4.函数的图象的大致形状是()A. B.C. D.5.当实数,m变化时,的最大值是()A.3 B.4C.5 D.66.在等比数列中,,公比,则()A. B.6C. D.27.曲线:在点处的切线方程为A. B.C. D.8.已知点是椭圆上的任意点,是椭圆的左焦点,是的中点,则的周长为()A. B.C. D.9.等比数列的各项均为正数,且,则=()A.8 B.16C.32 D.6410.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;③回归直线就是散点图中经过样本数据点最多的那条直线;④如果两个变量的线性相关程度越高,则线性相关系数就越接近于;其中错误说法的个数是()A. B.C. D.11.已知O为坐标原点,=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A. B.C. D.12.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知5件产品中有2件次品、3件合格品,从这5件产品中任取2件,求2件都是合格品的概率_______.14.在学习《曲线与方程》的课堂上,老师给出两个曲线方程;,老师问同学们:你想到了什么?能得到哪些结论?下面是四位同学的回答:甲:曲线关于对称;乙:曲线关于原点对称;丙:曲线与坐标轴在第一象限围成的图形面积;丁:曲线与坐标轴在第一象限围成的图形面积;四位同学回答正确的有______(选填“甲、乙、丙、丁”)15.设为曲线上一点,,,若,则__________16.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件.为检验产品的质量,现用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取___________件三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,直线(1)证明直线与圆C一定有两个交点;(2)求直线与圆相交的最短弦长,并求对应弦长最短时的直线方程18.(12分)椭圆C:的左右焦点分别为,,P为椭圆C上一点.(1)当P为椭圆C的上顶点时,求的余弦值;(2)直线与椭圆C交于A,B,若,求k19.(12分)已知函数(1)当时,求的单调递减区间;(2)若关于的方程恰有两个不等实根,求实数的取值范围20.(12分)在数列中,,是与的等差中项,(1)求证:数列是等差数列(2)令,求数列的前项的和21.(12分)已知正项数列的首项为,且满足,(1)求证:数列为等比数列;(2)记,求数列的前n项和22.(10分)已知命题实数满足不等式,命题实数满足不等式.(1)当时,命题,均为真命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得:①的中点为,,的中垂线方程为,即联立,解得的外心为则,整理得:②联立①②得:,或,当,时,重合,舍去顶点的坐标是故选:A【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.2、B【解析】根据导函数的图象,得到函数的单调区间与极值点,即可判断;【详解】解:由导函数的图象可知,当时,当时,当时,当或时,则在上单调递增,在上单调递减,所以函数在处取得极小值即最小值,所以是函数的极小值点与最小值点,因为,所以曲线在处切线的斜率大于零,故选:B3、D【解析】根据曲线为焦点在y轴上的椭圆可得出答案.【详解】因为方程表示的曲线为焦点在y轴上的椭圆,所以,解得.故选:D.4、B【解析】对A,根据当时,的值即可判断;对B,根据函数在上的单调性即可判断;对C,根据函数的奇偶性即可判断;对D,根据函数在上的单调性即可判断.【详解】解:对A,当时,,故A错误;对B,的定义域为,且,故为奇函数;,当时,当时,,即,又,,故存在,故在单调递增,单调递减,单调递增,故B正确;对C,为奇函数,故C错误;对D,函数在上不单调,故D错误.故选:B.5、D【解析】根据点到直线的距离公式可知可以表示单位圆上点到直线的距离,利用圆的性质结合图形即得.【详解】由题可知,可以表示单位圆上点到直线的距离,设,因直线,即表示恒过定点,根据圆的性质可得.故选:D.6、D【解析】利用等比数列的通项公式求解【详解】由等比数列的通项公式得:.故选:D7、A【解析】因为,所以曲线在点(1,0)处的切线的斜率为,所以切线方程为,即,选A8、A【解析】设椭圆另一个焦点为,连接,利用中位线的性质结合椭圆的定义可求得结果.【详解】在椭圆中,,,,如图,设椭圆的另一个焦点为,连接,因为、分别为、的中点,则,则的周长为,故选:A.9、B【解析】由等比数列的下标和性质即可求得答案.【详解】由题意,,所以.故选:B.10、C【解析】根据统计的概念逐一判断即可.【详解】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;对于②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;故②正确;对于③,线性回归方程必过样本中心点,回归直线不一定就是散点图中经过样本数据点最多的那条直线,也可能不过任何一个点;③不正确;对于④,如果两个变量的线性相关程度越高,则线性相关系数就越接近于,不正确,应为相关系数的绝对值就越接近于;综上,其中错误的个数是;故选:C.11、C【解析】设,用表示出,求得的表达式,结合二次函数的性质求得当时,取得最小值,从而求得点的坐标.【详解】设,则=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以当λ=时,取得最小值,此时==,即点Q的坐标为.故选:C12、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】列举总的基本事件及满足题目要求的基本事件,然后用古典概型的概率公式求解即可.【详解】设5件产品中的次品为,合格品为,则从这5件产品中任取2件,有共10个基本事件,其中2件都是合格品的有共3个基本事件,故2件都是合格品的概率为故答案为:.14、甲、乙、丙、丁【解析】结合对称性判断甲、乙的正确性;通过对比和与坐标轴在第一象限围成的图形面积来判断丙丁的正确性.【详解】对于甲:交换方程中和的位置得,所以曲线关于对称,甲回答正确.对于乙:和两个点都满足方程,所以曲线关于原点对称,乙回答正确.对于丙:直线与坐标轴在第一象限围成的图形面积为,,,在第一象限,直线与曲线都满足,,,所以在第一象限,直线的图象在曲线的图象上方,所以,丙回答正确.对于丁:圆与坐标轴在第一象限围成的图形面积为,在第一象限,曲线与曲线都满足,,,,所以在第一象限,曲线的图象在曲线的图象下方,所以,丁回答正确.故答案为:甲、乙、丙、丁15、4【解析】化简曲线方程,得到双曲线的一支,结合双曲线定义求出结果【详解】由,得,即,故为双曲线右支上一点,且分别为该双曲线的左、右焦点,则,.【点睛】本题考查了双曲线的定义,解题时要先化简曲线方程,然后再结合双曲线定义求出结果,较为基础16、【解析】根据分层抽样的方法,即可求解.【详解】由题意,甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件,用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取个数为件.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)答案见解析【解析】(1)由,变形为求解直线过的定点,即可得解;(2)法一:由圆心和连线与直线垂直求解;法二:由圆心到直线距离最大时求解.【小问1详解】解:,所以,令,所以直线经过定点,圆可变形为,因为,所以定点在圆内,所以直线和圆C相交,有两个交点;【小问2详解】法一:圆心为,到距离为,圆心与连线的斜率为,最短弦与圆心和的连线垂直,所以,所以最短弦长为,直线的方程为法二:圆心到直线距离:,,要求d的最大值,则,当且仅当时,d的最大值为,所以最短弦长为,直线的方程为.18、(1)(2)【解析】(1)利用余弦定理可求顶角的余弦值.(2)联立直线方程和椭圆方程,消元后利用韦达定理结合弦长公式可求的值.【小问1详解】当为椭圆的上顶点时,,在中,由余弦定理知.【小问2详解】设,,将直线与椭圆:联立得:,因为直线过焦点,故恒成立,又,由弦长公式得,化简整理得:,解得.19、(1);(2)【解析】(1)求出导数,令,得出变化情况表,即可得出单调区间;(2)分离参数得,构造函数,利用导数讨论单调性,根据与恰有两个不同交点即可得出.【详解】(1)当时,函数,则令,得,,当x变化时,的变化情况如下表:1+00+↗极大值↘极小值↗∴在上单调递减(2)依题意,即.则令,则当时,,故单调递增,且;当时,,故单调递减,且∴函数在处取得最大值故要使与恰有两个不同的交点,只需∴实数a的取值范围是【点睛】关键点睛:本题考查根据方程根的个数求参数,解题的关键是参数分离,构造函数利用导数讨论单调性,根据函数交点个数判断.20、(1)证明见解析;(2).【解析】(1)求得,利用等差数列的定义可证得结论成立;(2)求出,可计算得出,利用并项求和法可求得数列的前项的和.小问1详解】解:由题意知是与的等差中项,可得,可得,则,可得,所以,,又由,可得,所以数列是首项和公差均为的等差数列.【小问2详解】解:由(1)可得:,,对任意的,,因此,.21、(1)证明见解析(2)【解析】(1)由递推关系式化简及等比数列的的定义证明即可;(2)根据裂项相消法求解即可得解.【小问1详解】证明:由得,而且,则,即数列为首项,公比为的等比数列【小问2详解】由上可知,所以,22、(1);(2).【解析】(1)分别求出命题,均为真
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 火车挂靠合同范本
- 2025年国家知识产权局专利局专利审查协作河南中心招聘60人备考题库有答案详解
- 惠农区委全面依法治区委员会办公室关于选聘行政执法监督员20人的备考题库及一套参考答案详解
- 2025年中国科学院高能物理研究所AI应用工程师岗位招聘备考题库附答案详解
- 2025年泸州融兆人力资源管理有限公司关于招聘警务辅助人员的备考题库及一套参考答案详解
- 互联网安全意识培训课件
- 2025年固镇县司法局选聘专职人民调解员16人备考题库及一套完整答案详解
- 机械装备故障诊断与预测维护研究答辩
- 竞业协议豁免合同
- 统一公司合同范本
- 04KV低压万能式断路器使用与操作培训课件
- 菊花的组织培养ppt
- 2023年北京市房山区高考英语二模试卷-普通用卷
- 《马克思主义政治经济学概论(第二版)》第八章 资本主义经济危机和历史趋势
- 饮食的健康哲学(山东联盟)知到章节答案智慧树2023年青岛大学
- 生产车间承包协议书
- GB 4943.1-2022音视频、信息技术和通信技术设备第1部分:安全要求
- LED数码管显示课件
- 双螺杆挤出机原理-图文
- 新型能源生物丁醇课件
- 工业催化原理课件
评论
0/150
提交评论