版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省衡水十三2026届高二数学第一学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等比数列{}中,,,则=()A.9 B.12C.±9 D.±122.已知关于的不等式的解集是,则的值是()A B.5C. D.73.已知,,,则的大小关系是()A. B.C. D.4.过抛物线C:y2=4x的焦点F分别作斜率为k1、k2的直线l1、l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,若|k1·k2|=2,则|AB|+|DE|的最小值为()A.10 B.12C.14 D.165.抛物线的焦点坐标是()A. B.C. D.6.如图,在三棱柱中,为的中点,若,,,则下列向量与相等的是()A. B.C. D.7.下列关于斜二测画法所得直观图的说法中正确的有()①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③菱形的直观图是菱形;④正方形的直观图是正方形.A.① B.①②C.③④ D.①②③④8.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B.C. D.9.在等比数列中,,,则()A. B.或C. D.或10.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.11.已知数列的前项和为,满足,,,则()A. B.C.,,成等差数列 D.,,成等比数列12.如图,我市某地一拱桥垂直轴截面是抛物线,已知水利人员在某个时刻测得水面宽,则此时刻拱桥的最高点到水面的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的通项公式为,,设是数列的前n项和,若对任意都成立,则实数的取值范围是__________.14.命题“,”是真命题,则的取值范围是________15.半径为的球的表面积为_______16.若直线与圆有公共点,则b的取值范围是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,且.(1)求数列的通项公式;(2)若,为数列的前n项和,求.18.(12分)已知公差不为零的等差数列的前项和为,,且,,成等比数列(1)求的通项公式;(2)记,求数列的前项和19.(12分)已知平面内两点,,动点P满足(1)求动点P的轨迹方程;(2)过定点的直线l交动点P的轨迹于不同的两点M,N,点M关于y轴对称点为,求证直线过定点,并求出定点坐标20.(12分)如图,直三棱柱中,,,是棱的中点,(1)求异面直线所成角的余弦值;(2)求二面角的余弦值21.(12分)已知椭圆的离心率是,且过点.(1)求椭圆的标准方程;(2)若直线与椭圆交于A、B两点,线段的中点为,为坐标原点,且,求面积的最大值.22.(10分)如图,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E为棱BC上的点,且(1)求证:平面PAC;(2)求二面角A-PC-D的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,设等比数列的公比为,由等比数列的性质求出,再求出【详解】根据题意,设等比数列的公比为,若,,则,变形可得,则,故选:2、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D3、B【解析】利用微积分基本定理计算,利用积分的几何意义求扇形面积得到,然后比较大小.【详解】,表示以原点为圆心,半径为2的圆在第二象限的部分的面积,∴;,∵e=2.71828…>2.7,,,,故选:4、B【解析】设出l1的方程为,与抛物线联立后得到两根之和,两根之积,用弦长公式表达出,同理表达出,利用基本不等式求出的最小值.【详解】抛物线C:y2=4x的焦点F为,直线l1的方程为,则联立后得到,设,,,则,同理设可得:,因为|k1·k2|=2,所以,当且仅当,即或时,等号成立,故选:B5、C【解析】化为标准方程,利用焦点坐标公式求解.【详解】抛物线的标准方程为,所以抛物线的焦点在轴上,且,所以,所以抛物线的焦点坐标为.故选:C6、A【解析】利用空间向量基本定理求解即可【详解】由于M是的中点,所以故选:A7、B【解析】根据斜二侧直观图的画法法则,直接判断①②③④的正确性,即可推出结论【详解】由斜二测画法规则知:三角形的直观图仍然是三角形,所以①正确;根据平行性不变知,平行四边形的直观图还是平行四边形,所以②正确;根据两轴的夹角为45°或135°知,菱形的直观图不再是菱形,所以③错误;根据平行于x轴的长度不变,平行于y轴的长度减半知,正方形的直观图不再是正方形,所以④错误.故选:B.8、C【解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.9、C【解析】计算出等比数列的公比,即可求得的值.【详解】设等比数列的公比为,则,则,所以,.故选:C.10、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A11、C【解析】写出数列前几项,观察规律,找到数列变化的周期,再依次去判断各项的说法即可解决.【详解】数列中,,,,则此数列为1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即数列的各项是周期为6数值循环重复的一列数,选项A:,,则.判断错误;选项B:由,可知当时,.判断错误;选项C:,则,即,,成等差数列.判断正确;选项D:,,则,,即,,不能构成等比数列.判断错误.故选:C12、D【解析】代入计算即可.【详解】设B点的坐标为,由抛物线方程得,则此时刻拱桥的最高点到水面的距离为2米.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】化简数列将问题转化为不等式恒成立问题,再对n分奇数和偶数进行讨论,分别求解出的取值范围,最后综合得出结果.【详解】根据题意,,.①当n是奇数时,,即对任意正奇数n恒成立,当时,有最小值1,所以.②当n是正偶数时,,即,又,故对任意正偶数n都成立,又随n增大而增大,当时,有最小值,即,综合①②可知.故答案为:.14、【解析】依题意可得,是真命题,参变分离得到在上有解,再利用构造函数利用函数的单调性计算可得.【详解】,等价于在上有解设,,则在上单调递减,在上单调递增,又,,所以,即故答案为:15、.【解析】由球的表面积公式计算【详解】由题意.故答案为:16、【解析】直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意可得数列是以2为公差的等差数列,再由可求出,从而可求出通项公式,(2)由(1)可得,然后利用分组求和可求出【小问1详解】因为数列满足,所以数列是以2为公差的等差数列,因为,所以,得,所以【小问2详解】由(1)可得,所以18、(1)(2)【解析】(1)设数列的公差为,由,且,,,利用“”法求解;(2)由,利用裂项相消法求解.【小问1详解】解:,,设数列的公差为,则,,,由题知,整理得,解得,(舍去),,则.【小问2详解】,则=.19、(1)(2)证明见解析,定点坐标为【解析】(1)直接由斜率关系计算得到;(2)设出直线,联立椭圆方程,韦达定理求出,再结合三点共线,求出参数,得到过定点.小问1详解】设动点,由已知有,整理得,所以动点的轨迹方程为;【小问2详解】由已知条件可知直线和直线斜率一定存在,设直线方程为,,,则,由,可得,则,即为,,,因为直线过定点,所以三点共线,即,即,即,即,即得,整理,得,满足,则直线方程为,恒过定点.【点睛】本题关键在于设出带有两个参数的直线的方程,联立椭圆方程后,利用题干中的条件,解出一个参数或得到两个参数之间的关系,即可求出定点.20、(1)(2)【解析】(1)建立空间直角坐标系,求出相关各点坐标,求出,利用向量的夹角公式求得答案;(2)求出平面平面和平面的一个法向量,利用向量夹角公式求得答案.【小问1详解】以为正交基底,建立如图所示的空间直角坐标系,则,,所以,所以直线所成角的余弦值为;【小问2详解】设为平面的一个法向量,,则m⋅,同理,则,可取平面的一个法向量为,则,由图可知二面角为锐角,所以二面角的余弦值为.21、(1);(2)2.【解析】(1)根据已知条件列出关于a、b、c的方程组即可求得椭圆标准方程;(2)直线l和x轴垂直时,根据已知条件求出此时△AOB面积;直线l和x轴不垂直时,设直线方程为点斜式y=kx+t,代入椭圆方程得二次方程,结合韦达定理和弦长得k和t关系,表示出△AOB的面积,结合基本不等式即可求解三角形面积最值.【小问1详解】由题知,解得,∴椭圆的标准方程为.【小问2详解】当轴时,位于轴上,且,由可得,此时;当不垂直轴时,设直线的方程为,与椭圆交于,,由,得.得,,从而已知,可得.∵.设到直线的距离为,则,结合化简得此时的面积最大,最大值为2.当且仅当即时取等号,综上,的面积的最大值为2.22、(1)证明见解析(2)【解析】建立空间直角坐标系,计算出相关点的坐标,进而计算出相关向量的坐标;(1)计算向量的数量积,,根据数量积结果为零,证明线线垂直,进而证明线面垂直2;(2)求出平面PCD的法向量和平面P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 昆明市官渡区云南大学附属中学星耀学校2026年校园招聘备考题库及答案详解参考
- 2025年兴业银行总行安全保卫部反洗钱中心招聘备考题库及一套参考答案详解
- 2025年邵东市中医医院编外合同制专业技术人员招聘38人备考题库及参考答案详解1套
- 清远市公安局公开招聘警务辅助人员200人备考题库及一套答案详解
- web课程设计题目青少年教育
- 2025年福州高速交警支队关于招聘警务辅助人员备考题库含答案详解
- 2025 九年级语文下册写作细节真实性指导课件
- 2025天津市政建设集团有限公司面向社会选聘总法律顾问1人笔试重点试题及答案解析
- 2026重庆市万州区长坪乡人民政府非全日制公益性岗位招聘1人笔试重点试题及答案解析
- 基于3D打印的航空发动机叶片冷却系统设计优化与热流控制教学研究课题报告
- 蒋诗萌小品《谁杀死了周日》台词完整版
- 肿瘤科危急值专题培训课件:《危急值接收、处置流程、专科危急值及处理原则》
- 海南省部分学校2023-2024学年高二下学期7月期末联考 化学试题(含解析)
- 2024年泰安市泰山产业发展投资集团有限公司招聘笔试冲刺题(带答案解析)
- 48贵州省贵阳市2023-2024学年五年级上学期期末数学试卷
- 卫浴洁具市场渠道营销策划
- 比亚迪S7说明书
- 涂装生产线设备维护方案
- 外委单位考核细则模板
- HXD1C型电力机车的日常检修工艺设计
- 专升本《模拟电子技术》模拟的题目试卷
评论
0/150
提交评论