2026届山东省济宁市嘉祥一中数学高二上期末考试模拟试题含解析_第1页
2026届山东省济宁市嘉祥一中数学高二上期末考试模拟试题含解析_第2页
2026届山东省济宁市嘉祥一中数学高二上期末考试模拟试题含解析_第3页
2026届山东省济宁市嘉祥一中数学高二上期末考试模拟试题含解析_第4页
2026届山东省济宁市嘉祥一中数学高二上期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省济宁市嘉祥一中数学高二上期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是两条不同的直线,是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件2.已知数列满足,,则的最小值为()A. B.C. D.3.已知向量,则下列结论正确的是()A.B.C.D.4.若数列是等差数列,其前n项和为,若,且,则等于()A. B.C. D.5.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ值为()A.-3或7 B.-2或8C0或10 D.1或116.双曲线的焦点坐标是()A. B.C. D.7.正方体的棱长为2,E,F,G分别为,AB,的中点,则直线ED与FG所成角的余弦值为()A. B.C. D.8.箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,设事件=“至少有一件次品”,则的对立事件为()A.至多两件次品 B.至多一件次品C.没有次品 D.至少一件次品9.直线x-y+1=0被椭圆+y2=1所截得的弦长|AB|等于()A. B.C. D.10.如图,M为OA的中点,以为基底,,则实数组等于()A. B.C. D.11.执行如图的程序框图,输出的S的值为()A. B.0C.1 D.212.阿基米德不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积公式,设椭圆的长半轴长、短半轴长分别为,则椭圆的面积公式为,若椭圆的离心率为,面积为,则椭圆的标准方程为()A.或 B.或C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.如图,在正四棱锥中,为棱PB的中点,为棱PD的中点,则棱锥与棱锥的体积之比为______14.已知内角A,B,C的对边为a,b,c,已知,且,则c的最小值为__________.15.将数列{n}按“第n组有n个数”的规则分组如下:(1),(2,3),(4,5,6),…,则第22组中的第一个数是_________16.设函数是函数的导函数,已知,且,则使得成立的x的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且是的中点.(1)求证:平面;(2)求二面角的余弦值.18.(12分)已知定圆,过的一条动直线与圆相交于、两点,(1)当与定直线垂直时,求出与的交点的坐标,并证明过圆心;(2)当时,求直线的方程19.(12分)已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9(1)求证:无论m为何值,直线l与圆C总相交(2)m为何值时,直线l被圆C所截得的弦长最小?请求出该最小值20.(12分)已知斜率为1的直线交抛物线:()于,两点,且弦中点的纵坐标为2.(1)求抛物线的标准方程;(2)记点,过点作两条直线,分别交抛物线于,(,不同于点)两点,且的平分线与轴垂直,求证:直线的斜率为定值.21.(12分)已知圆与轴相切,圆心在直线上,且到直线的距离为(1)求圆的方程;(2)若圆的圆心在第一象限,过点的直线与相交于、两点,且,求直线的方程22.(10分)已知椭圆的焦距为4,点在G上.(1)求椭圆G的方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据垂直关系的性质可判断.【详解】由题,,则或,若,则或或与相交,故充分性不成立;若,则必有,故必要性成立,所以“”是“”的必要不充分条件.故选:B.2、C【解析】采用叠加法求出,由可得,结合对勾函数性质分析在或6取到最小值,代值运算即可求解.【详解】因为,所以,,,,式相加可得,所以,,当且仅当取到,但,,所以时,当时,,,所以的最小值为.故选:C3、D【解析】由题可知:,,,故选;D4、B【解析】由等差数列的通项公式和前项和公式求出的首项和公差,即可求出.【详解】设等差数列的公差为,则解得:,所以.故选:B.5、A【解析】根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值解:把圆的方程化为标准式方程得(x+1)2+(y﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x﹣y+λ=0沿x轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0,因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系6、B【解析】根据双曲线的方程,求得,结合双曲线的几何性质,即可求解.【详解】由题意,双曲线,可得,所以,且双曲线的焦点再轴上,所以双曲线的焦点坐标为.故选:B.7、B【解析】建立空间直角坐标系,利用空间向量坐标运算即可求解.【详解】如图所示建立适当空间直角坐标系,故选:B8、C【解析】利用对立事件的定义,分析即得解【详解】箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,可能出现:“两件次品”,“一件次品,一件正品”,“两件正品”三种情况根据对立事件的定义,事件=“至少有一件次品”其对立事件为:“两件正品”,即”没有次品“故选:C9、A【解析】联立方程组,求出交点坐标,利用两点间的距离公式求距离.【详解】由得交点为(0,1),,则|AB|==.故选:A.10、B【解析】根据空间向量减法的几何意义进行求解即可.【详解】,所以实数组故选:B11、A【解析】直接求出的值即可.【详解】解:由题得,程序框图就是求,由于三角函数的最小正周期为,,,所以.故选:A12、B【解析】根据题意列出的关系式,即可求得,再分焦点在轴与轴两种情况写出标准方程.【详解】根据题意,可得,所以椭圆的标准方程为或.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据图形可求出与棱锥的体积之比,即可求出结果【详解】如图所示:棱锥可看成正四棱锥减去四个小棱锥的体积得到,设正四棱锥的体积为,为PB的中点,为PD的中点,所以,而,同理,故棱锥的体积的为,即棱锥与棱锥的体积之比为故答案为:.14、【解析】先利用正弦定理边化角式子,得到,再利用正弦定理求出,根据与的关系,求得,即可求得c的最小值.【详解】,即,又,当最大时,即,最小,且为由正弦定理得:,当时,c的最小值为故答案为:【点睛】方法点睛:在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)同时出现两个自由角(或三个自由角)时,要用到.15、【解析】由已知,第组中最后一个数即为前组数的个数和,由此可求得第21组的最后一个数,从而就可得第22组的第一个数.【详解】由条件可知,第21组的最后一个数为,所以第22组的第1个数为.故答案为:16、【解析】构造函数利用导数研究单调性,即可得到答案;【详解】,令,,单调递减,且,,x的取值范围是,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取的中点F,连接EF,,由四边形是平行四边形即可求解;(2)采用建系法,以为轴,为轴,垂直底面方向为轴,求出对应点坐标,结合二面角夹角余弦公式即可求解.【小问1详解】取的中点F,连接EF,,∵,∴,且,∴,∴四边形是平行四边形,∴,又平面,平面,∴平面;【小问2详解】取AC的中点O,以O为坐标原点,建立如图所示的空间直角坐标系,则,,,∴,.设平面的法向量是,则,即,令,得,易知平面的一个法向量是,∴,又二面角是钝二面角,∴二面角的余弦值为.18、(1),证明见解析;(2)或.【解析】(1)根据题意可设直线的方程为,将点的坐标代入直线的方程,可求得的值,再将直线、的方程联立,可得出这两条直线的交点的坐标,将圆心的坐标代入直线的方程可证得结论成立;(2)利用勾股定理可求得圆心到直线的距离,对直线的斜率是否存在进行分类讨论,设出直线方程,利用点到直线的距离公式求出参数的值,即可得出直线的方程.【小问1详解】解:当直线与定直线垂直时,可设直线的方程为,将点的坐标代入直线的方程可得,则,此时,直线的方程为,联立可得,即点,圆心的坐标为,因为,故直线过圆心.【小问2详解】解:设圆心到直线的距离为,则.当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,合乎题意;当直线的斜率存在时,可设直线的方程为,即,由题意可得,解得,此时直线的方程为,即.综上所述,直线的方程为或.19、(1)详见解析(2)m为-时,截得的弦长最小,最小值为2【解析】(1)将直线l变形,可知直线l过定点,证明定点在圆内部;(2)利用垂径定理和弦长公式可得.【详解】(1)证明:直线l变形为m(x-y+1)+(3x-2y)=0令解得,如图所示,故动直线l恒过定点A(2,3)而|AC|==<3(半径)∴点A在圆内,故无论m取何值,直线l与圆C总相交(2)解:由平面几何知识知,弦心距越大,弦长越小,即当AC垂直直线l时,弦长最小,此时kl·kAC=-1,即,∴m=-最小值为故m为-时,直线l被圆C所截得的弦长最小,最小值为2【点睛】考查直线过定点、点与圆的位置关系以及弦长问题,解题的关键是直线系形式的转化.20、(1);(2)见解析.【解析】(1)涉及中点弦,用点差法处理即可求得,进而求得抛物线方程;(2)由的平分线与轴垂直,可知直线,的斜率存在,且斜率互为相反数,且不等于零,设,直线,则直线分别和抛物线方程联立,解得利用,结合直线方程,即可证得直线的斜率为定值.【详解】(1)设,则,两式相减,得:由弦中点纵坐标为2,得,故.所以抛物线的标准方程.(2)由的平分线与轴垂直,可知直线,的斜率存在,且斜率互为相反数,且不等于零,设直线由得由点在抛物线上,可知上述方程的一个根为.即,同理.直线的斜率为定值.【点睛】本题考查应用点差法处理中点弦问题,直线与抛物线中,斜率为定值问题,考查分析问题的能力,考查学生的计算能力,难度较难.21、(1)或(2)或【解析】(1)设圆心的坐标为,则该圆的半径长为,利用点到直线的距离公式可求得的值,即可得出圆的标准方程;(2)利用勾股定理可求得圆心到的距离,分析可知直线的斜率存在,设直线的方程为,利用点到直线的距离公式可求得关于的方程,解出的值,即可得出直线的方程.【小问1详解】解:设圆心的坐标为,则该圆的半径长为,因为圆心到直线的距离为,解得,所以圆心的坐标为或,半径为,因此,圆的标准方程为或.【小问2详解】解:若圆的圆心在第一象限,则圆的标准方程为.因为,所以圆心到直线的距离.若直线的斜率不存在,则直线的方程为,此时圆心到直线的距离为,不合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论