湖北省郧阳中学、恩施高中、随州二中三校2026届高二上数学期末联考试题含解析_第1页
湖北省郧阳中学、恩施高中、随州二中三校2026届高二上数学期末联考试题含解析_第2页
湖北省郧阳中学、恩施高中、随州二中三校2026届高二上数学期末联考试题含解析_第3页
湖北省郧阳中学、恩施高中、随州二中三校2026届高二上数学期末联考试题含解析_第4页
湖北省郧阳中学、恩施高中、随州二中三校2026届高二上数学期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省郧阳中学、恩施高中、随州二中三校2026届高二上数学期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.胡萝卜中含有大量的胡萝卜素,摄入人体消化器官后,可以转化为维生素,现从,两个品种的胡萝卜所含的胡萝卜素(单位:)得到茎叶图如图所示,则下列说法不正确的是A. B.的方差大于的方差C.品种的众数为 D.品种的中位数为2.已知数列的通项公式为,则()A.12 B.14C.16 D.183.如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为,的面积为,并向正方形中随机投掷个点,用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率为附表:A. B.C. D.4.准线方程为的抛物线的标准方程为()A. B.C. D.5.在平行六面体中,,,,则()A. B.5C. D.36.直线与圆相交与A,B两点,则AB的长等于()A3 B.4C.6 D.17.若数列的前n项和(n∈N*),则=()A.20 B.30C.40 D.508.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中学生中抽取容量为50的样本,则应从高三年级抽取的学生数为()A.10 B.15C.20 D.309.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④10.函数的导函数为()A. B.C. D.11.双曲线的光学性质为:如图①,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线新闻灯”的轴截面是双曲线的一部分,如图②,其方程为,为其左、右焦点,若从右焦点发出的光线经双曲线上的点和点反射后,满足,,则该双曲线的离心率为()A. B.C. D.12.函数的值域为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数a,另一个作为对数的真数b.则的概率为______.14.已知双曲线两焦点之间的距离为4,则双曲线的渐近线方程是___________.15.抛物线上一点到其焦点的距离为,则的值为______16.数列中,,,,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,记为数列的前项和,已知:.(1)求数列的通项公式;(2)求使成立的的值.18.(12分)已知圆M的圆心在直线上,且圆心在第一象限,半径为3,圆M被直线截得的弦长为4.(1)求圆M的方程;(2)设P是直线上的动点,证明:以MP为直径的圆必过定点,并求所有定点的坐标.19.(12分)已知圆C的圆心在直线上,且经过点和(1)求圆C的标准方程;(2)若过点的直线l与圆C交于A,B两点,且,求直线l的方程20.(12分)在等差数列中,,(1)求的通项公式;(2)设,求数列的前项和21.(12分)已知数列为等差数列,为其前n项和,若,(1)求数列的首项和公差;(2)求的最小值.22.(10分)解答下列两个小题:(1)双曲线:离心率为,且点在双曲线上,求的方程;(2)双曲线实轴长为2,且双曲线与椭圆的焦点相同,求双曲线的标准方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】读懂茎叶图,分别计算出众数、中位数、方差,然后对各选项进行判断【详解】由茎叶图知,品种所含胡萝卜素普遍高于品种,所以,故A正确;品种的数据波动比品种的数据波动大,所以的方差大于的方差,故B正确;品种的众数为与,故C错误;品种的数据的中位数为,故D正确.故选.【点睛】本题主要考查了对数据的分析,首先要读懂茎叶图,然后计算出众数、中位数、方差,即可对各选项进行判断,较为基础2、D【解析】利用给定的通项公式直接计算即得.【详解】因数列的通项公式为,则有,所以.故选:D3、D【解析】每个点落入中的概率为,设落入中的点的数目为,题意所求概率为故选D4、D【解析】的准线方程为.【详解】的准线方程为.故选:D.5、B【解析】由,则结合已知条件及模长公式即可求解.【详解】解:,所以,所以,故选:B.6、C【解析】根据弦长公式即可求出【详解】因为圆心到直线的距离为,所以AB的长等于故选:C7、B【解析】由前项和公式直接作差可得.【详解】数列的前n项和(n∈N*),所以.故选:B.8、C【解析】根据抽取比例乘以即可求解.【详解】由题意可得应从高三年级抽取的学生数为,故选:C.9、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B10、B【解析】利用复合函数求导法则即可求导.【详解】,故选:B.11、C【解析】连接,已知条件为,,设,由双曲线定义表示出,用已知正切值求出,再由双曲线定义得,这样可由勾股定理求出(用表示),然后在中,应用勾股定理得出的关系,求得离心率【详解】易知共线,共线,如图,设,,则,由得,,又,所以,,所以,所以,由得,因为,故解得,则,在中,,即,所以故选:C12、C【解析】根据基本不等式即可求出【详解】因为,当且仅当时取等号,所以函数的值域为故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用列举法,结合古典概型概率计算公式以及对数的知识求得正确答案.【详解】的所有可能取值为,,共种,满足的为,,共种,所以的概率为.故答案为:14、.【解析】根据条件求出c,进而根据求出a,最后写出渐近线方程.【详解】因为双曲线两焦点之间的距离为4,所以,解得,所以,,双曲线的渐近线方程是.故答案为:.15、【解析】将抛物线方程化为标准方程,利用抛物线的定义将抛物线上的点到焦点的距离转化为到准线的距离,再利用点到直线的距离公式进行求解.【详解】将抛物线化为,由抛物线定义得点到准线的距离为,即,解得故答案为:.16、##0.5【解析】直接计算得到答案.【详解】∵,,则,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据给定条件求出数列的公差及首项即可计算作答.(2)由(1)求出,建立方程求解作答.【小问1详解】设等差数列公差为,因,则,解得,于是得,所以数列的通项公式为:.【小问2详解】由(1)知,,由得:,即,解得或,所以使成立的的值是或.18、(1);(2)证明见解析,定点和.【解析】(1)根据给定条件设出圆心坐标,再结合点到直线距离公式计算作答.(2)设点,求出圆的方程,结合方程求出其定点.【小问1详解】因圆M的圆心在直线上,且圆心在第一象限,设圆心,且,圆心到直线的距离为,又由解得,从而,而,解得,所以圆M的方程为.【小问2详解】由(1)知:,设点,,设动圆上任意一点当与点P,M都不重合时,,有,当与点P,M之一重合时,对应为零向量,也成立,,,,化简得:,由,解得或,所以以MP为直径的圆必过定点和.【点睛】方法点睛:待定系数法求圆的方程,由题设条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式19、(1)(2)或【解析】(1)点和的中垂线经过圆心,两直线联立方程得圆心坐标,再利用两点间距离公式求解半径.(2)已知弦长,求解直线方程,分类讨论斜率是否存在.小问1详解】点和的中点为,,所以中垂线的,利用点斜式得方程为,联立方程得圆心坐标为,所以圆C的标准方程为.【小问2详解】当过点的直线l斜率不存在时,直线方程为,此时弦长,符合题意.当过点的直线l斜率存在时,设直线方程为,化简得,弦心距,所以,解得,所以直线方程为.综上所述直线方程为或.20、(1);(2).【解析】(1)根据等差数列的通项公式求解;(2)运用裂项相消法求数列的和.详解】(1)∵,∴,即∴(2)由(1)可得,即.利用累加法得【点睛】本题考查等差数列的通项公式和裂项相消法求数列的和.21、(1)首项为-2,公差为1;(2).【解析】(1)设出等差数列的公差,再结合前n项和公式列式计算作答.(2)由(1)的结论,探求数列的性质即可推理计算作答.【小问1详解】设等差数列首项为,公差为,而为其前n项和,,,于是得:,解得,,所以,.【小问2详解】由(1)知,,,,数列是递增数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论