版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省平遥县和诚2026届高二数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面,的法向量分别为,,且,则()A. B.C. D.2.已知点是椭圆的左右焦点,椭圆上存在不同两点使得,则椭圆的离心率的取值范围是()A. B.C. D.3.已知椭圆,则椭圆的长轴长为()A.2 B.4C. D.84.中国景德镇陶瓷世界闻名,其中青花瓷最受大家的喜爱,如图1这个精美的青花瓷花瓶,它的颈部(图2)外形上下对称,基本可看作是离心率为的双曲线的一部分绕其虚轴所在直线旋转所形成的曲面,若该颈部中最细处直径为16厘米,瓶口直径为20厘米,则颈部高为()A.10 B.20C.30 D.405.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定6.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面7.已知曲线与直线总有公共点,则m的取值范围是()A. B.C. D.8.已知双曲线的左、右焦点分别为,,点在双曲线的右支上,且,则双曲线离心率的取值范围是()A. B.C. D.9.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.10.如图,在直三棱柱中,AB=BC,,若棱上存在唯一的一点P满足,则()A. B.1C. D.211.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个12.经过点且与直线垂直的直线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,,且,则_______.14.如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________(写出所有正确命题的编号).①当时,S为四边形;②当时,S为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.15.已知圆锥底面半径为1,高为,则该圆锥的侧面积为_____16.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直三棱柱中,,,E、F分别是、的中点,D为棱上的点.(1)证明:;(2)当时,求直线BF与平面DEF所成角的正弦值.18.(12分)已知数列满足(1)求数列的通项公式;(2)设,求数列的前n项和19.(12分)已知函数(a为常数)(1)讨论函数的单调性;(2)不等式在上恒成立,求实数a的取值范围.20.(12分)在①,②,③,,成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列中,公差不等于的等差数列满足_________,求数列的前项和.21.(12分)已知圆C:,直线l:.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且时,求直线l的方程.22.(10分)已知椭圆C:的长轴长为,P是椭圆上异于顶点的一个动点,O为坐标原点,A为椭圆C的上顶点,Q为PA的中点,且直线PA与直线OQ的斜率之积恒为-2.(1)求椭圆C的方程;(2)若斜率为k且过上焦点F的直线l与椭圆C相交于M,N两点,当点M,N到y轴距离之和最大时,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题得,解方程即得解.【详解】解:因为,所以所以,所以,所以.故选:D2、C【解析】先设点,利用向量关系得到两点坐标之间的关系,再结合点在椭圆上,代入方程,消去即得,根据题意,构建的齐次式,解不等式即得结果.【详解】设,由得,,,即,由在椭圆上,故,即,消去得,,根据椭圆上点满足,又两点不同,可知,整理得,故,故.故选:C.【点睛】关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到一组等量关系(齐次式),进而求解离心率或范围.3、B【解析】根据椭圆的方程求出即得解.【详解】解:由题得椭圆的所以椭圆的长轴长为.故选:B4、B【解析】设双曲线方程为,根据已知条件可得的值,由可得双曲线的方程,再将代入方程可得的值,即可求解.【详解】因为双曲线焦点在轴上,设双曲线方程为由双曲线的性质可知:该颈部中最细处直径为实轴长,所以,可得,因为离心率为,即,可得,所以,所以双曲线的方程为:,因瓶口直径为20厘米,根据对称性可知颈部最右点横坐标为,将代入双曲线可得,解得:,所以颈部高为,故选:B5、A【解析】∵且,∴,又,∴,故选A.6、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D7、D【解析】对曲线化简可知曲线表示以点为圆心,2为半径的圆的下半部分,对直线方程化简可得直线过定点,画出图形,由图可知,,然后求出直线的斜率即可【详解】由,得,因为,所以曲线表示以点为圆心,2为半径的圆的下半部分,由,得,所以,得,所以直线过定点,如图所示设曲线与轴的两个交点分别为,直线过定点,为曲线上一动点,根据图可知,若曲线与直线总有公共点,则,得,设直线为,则,解得,或,所以,所以,所以,故选:D8、C【解析】根据双曲线的定义求得,利用可得离心率范围【详解】因为,又,所以,,又,即,,所以离心率故选:C9、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D10、D【解析】设,构建空间直角坐标系,令且,求出,,再由向量垂直的坐标表示列方程,结合点P的唯一性有求参数a,即可得结果.【详解】由题设,构建如下图空间直角坐标系,若,则,,且,所以,,又存在唯一的一点P满足,所以,则,故,可得,此时,所以.故选:D11、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.12、A【解析】根据点斜式求得正确答案.【详解】直线的斜率为,经过点且与直线垂直的直线方程为,即.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据数列的递推公式,发现规律,即数列为周期数列,然后求出即可【详解】根据题意可得:,,,故数列为周期数列可得:故答案为:14、①②③⑤【解析】①由如图当点向移动时,满足,只需在上取点满足,即可得截面为四边形,如图所示,是四边形,故①正确;②当时,即为中点,此时可得PQ∥AD,AP=QD==,故可得截面APQD为等腰梯形,等腰梯形,故②正确;③当时,如图,延长至,使,连接交于,连接交于,连接,可证,由∽,可得,故可得,故③正确;④由③可知当时,只需点上移即可,此时的截面形状仍然如图所示的,如图是五边形,故④不正确;⑤当时,与重合,取的中点,连接,可证,且,可知截面为为菱形,故其面积为,如图是菱形,面积为,故⑤正确,故答案为①②③⑤考点:正方体的性质.15、【解析】由已知求得母线长,代入圆锥侧面积公式求解【详解】由已知可得r=1,h=,则圆锥的母线长l=,∴圆锥的侧面积S=πrl=2π故答案为2π【点睛】本题考查圆锥侧面积的求法,侧面积公式S=πrl.16、【解析】求出等边的边长,画出图形,判断D的位置,然后求解即可.【详解】为等边三角形且其面积为,则,如图所示,设点M为的重心,E为AC中点,当点在平面上的射影为时,三棱锥的体积最大,此时,,点M为三角形ABC的重心,,中,有,,所以三棱锥体积的最大值故答案为:【点睛】思路点睛:本题考查球的内接多面体,棱锥的体积的求法,要求内接三棱锥体积的最大值,底面是面积一定的等边三角形,需要该三棱锥的高最大,故需要底面,再利用内接球,求出高,即可求出体积的最大值,考查学生的空间想象能力与数形结合思想,及运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由题意建立如图所示的空间直角坐标系,利用空间向量证明即可,(2)求出平面DEF的法向量,利用空间向量求解【小问1详解】证明:因为三棱柱是直三棱柱,且,所以两两垂直,所以以为原点,以所在的直线分别为轴建立空间直角坐标系,则,,设,则,所以,所以,所以【小问2详解】因为,所以,所以,设平面一个法向量为,则,令,则,设直线BF与平面DEF所成角为,则,所以直线BF与平面DEF所成角的正弦值为18、(1)(2)【解析】(1)当时,由,可得,两式相减化简可求得通项,(2)由(1)得,然后利用裂项相消法可求得结果【小问1详解】因为,所以时,,两式作差得,,所以时,,又时,,得,符合上式,所以的通项公式为【小问2详解】由(1)知,所以即数列的前n项和19、(1)当时,在定义域上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)求出的导数,通过讨论的范围,求出函数的单调区间即得解;(2)问题转化为,,,令,求出的最大值,从而求出的范围即得解【详解】解:(1)函数的定义域为,,①当时,,,,在定义域上单调递增②当时,若,则,在上单调递增;若,则,在上单调递减综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减(2)当时,,不等式在,上恒成立,,,,令,,,,在,上单调递增,(1),,的范围为,20、详见解析【解析】根据已知求出的通项公式.当①②时,设数列公差为,利用赋值法得到与的关系式,列方程求出与,求出,写出的通项公式,可得数列的通项公式,利用错位相减法求和即可;选②③时,设数列公差为,根据题意得到与的关系式,解出与,写出的通项公式,可得数列的通项公式,利用错位相减法求和即可;选①③时,设数列公差为,根据题意得到与的关系式,发现无解,则等差数列不存在,故不合题意.【详解】解:因为,,所以是以为首项,为公比的等比数列,所以,选①②时,设数列公差为,因为,所以,因为,所以时,,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.选②③时,设数列公差为,因为,所以,即,因为,,成等比数列,所以,即,化简得,因为,所以,从而,所以,所以,(i)所以(ii)(i)(ii),得:,所以.选①③时,设数列公差为,因为,所以时,,所以.又因为,,成等比数列,所以,即,化简得,因为,所以,从而无解,所以等差数列不存在,故不合题意.【点睛】本题考查了等差(比)数列的通项公式,考查了错位相减法在数列求和中的应用,考查了转化能力与方程思想,属于中档题.21、(1);(2)或.【解析】(1)根据圆心到直线的距离d等于圆的半径r即可求得答案;(2)由并结合(1)即可求得答案.【小问1详解】由圆:,可得,其圆心为,半径,若直线与圆相切,则圆心到直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- java程序设计课程设计的代码
- dsp原理及应用课程设计
- 2025湖南株洲市茶陵县茶陵湘剧保护传承中心公开招聘工作人员5人笔试重点试题及答案解析
- 2026连南农商银行校园招聘参考笔试题库附答案解析
- 2025广西玉林师范学院公开招聘第二批工作人员49人备考核心题库及答案解析
- 安徽房地产估价课程设计
- 2025南昌农商银行中层管理岗位人员招聘5人考试重点试题及答案解析
- 2025年农产品品牌营销趋势五年报告
- 《学前教育专业实践教学体系中的儿童科学教育与探索精神培养研究》教学研究课题报告
- 激光切割设备五年技术升级行业报告2025年
- 《马克思主义政治经济学》教案
- 小小小厨师幼儿健康食谱烹饪
- 2023历史新课标培训心得
- 国家开放大学期末机考理工英语3
- 《贪污贿赂罪新》课件
- 《斯大林格勒保卫战》课件
- 清华大学《工程伦理》网课习题及期末考试答案
- 2023年运动康复期末复习-体适能理论与训练(运动康复专业)考试上岸题库历年考点含答案
- 中国纪录片发展历程
- 班组工程进度款申请表
- 四年级阅读训练概括文章主要内容(完美)
评论
0/150
提交评论