江西省南昌市第十五中学2026届数学高二上期末预测试题含解析_第1页
江西省南昌市第十五中学2026届数学高二上期末预测试题含解析_第2页
江西省南昌市第十五中学2026届数学高二上期末预测试题含解析_第3页
江西省南昌市第十五中学2026届数学高二上期末预测试题含解析_第4页
江西省南昌市第十五中学2026届数学高二上期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省南昌市第十五中学2026届数学高二上期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某企业甲车间有200人,乙车间有300人,现用分层抽样的方法在这两个车间中抽取25人进行技能考核,则从甲车间抽取的人数应为()A.5 B.10C.8 D.92.在的展开式中,只有第4项的二项式系数最大,则()A.5 B.6C.7 D.83.为发挥我市“示范性高中”的辐射带动作用,促进教育的均衡发展,共享优质教育资源.现分派我市“示范性高中”的5名教师到,,三所薄弱学校支教,开展送教下乡活动,每所学校至少分派一人,其中教师甲不能到学校,则不同分派方案的种数是()A.150 B.136C.124 D.1004.执行如图所示的程序框图,若输出的,则输入的可能为()A.9 B.5C.4 D.35.执行如图所示的程序框图,若输入t的取值范围为,则输出s的取值范围为()A. B.C. D.6.已知两个向量,若,则的值为()A. B.C.2 D.87.设是定义在R上的可导函数,若(为常数),则()A. B.C. D.8.如图,在直三棱柱中,且,点E为中点.若平面过点E,且平面与直线AB所成角和平面与平面所成锐二面角的大小均为30°,则这样的平面有()A.1个 B.2个C.3个 D.4个9.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块10.直线关于直线对称的直线方程为()A. B.C. D.11.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值12.圆与圆的位置关系是()A.外离 B.外切C.相交 D.内切二、填空题:本题共4小题,每小题5分,共20分。13.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的列联表中,______.会外语不会外语合计男ab20女6d合计185014.抛物线的焦点坐标为________15.万众瞩目的北京冬奥会将于2022年2月4日正式开幕,继2008年北京奥运会之后,国家体育场(又名鸟巢)将再次承办奥运会开幕式.在手工课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同、扁平程度相同的椭圆.已知大椭圆的长轴长为40cm,短轴长为20cm,小椭圆的短轴长为10cm,则小椭圆的长轴长为________cm.16.已知函数有且仅有两个不同的零点,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是边长为2的正方形,正方形绕旋转形成一个圆柱;(1)求该圆柱的表面积;(2)正方形绕顺时针旋转至,求异面直线与所成角的大小18.(12分)已知函数在处取得极值确定a的值;若,讨论的单调性19.(12分)(1)已知等轴双曲线的上顶点到一条渐近线的距离为,求此双曲线的方程;(2)已知抛物线的焦点为,设过焦点且倾斜角为的直线交抛物线于,两点,求线段的长20.(12分)已知函数(1)讨论的单调区间;(2)求在上的最大值.21.(12分)从①,②,③,这三个条件中任选一个,补充在下面问题中并作答:已知等差数列公差大于零,且前n项和为,,______,,求数列的前n项和.(注:如果选择多个条件分别解答,那么按照第一个解答计分)22.(10分)已知函数,,其中.(1)试讨论函数的单调性;(2)若,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据分层抽样的定义即可求解.【详解】从甲车间抽取的人数为人故选:B2、B【解析】当n为偶数时,展开式中第项二项式系数最大,当n为奇数时,展开式中第和项二项式系数最大.【详解】因为只有一项二项式系数最大,所以n为偶数,故,得.故选:B3、D【解析】对甲所在组的人数分类讨论即得解.【详解】当甲一个人去一个学校时,有种;当甲所在的学校有两个老师时,有种;当甲所在的学校有三个老师时,有种;所以共有28+48+24=100种.故选:D【点睛】方法点睛:排列组合常用方法有:简单问题直接法、小数问题列举法、相邻问题捆绑法、不相邻问题插空法、至少问题间接法、复杂问题分类法、等概率问题缩倍法.要根据已知条件灵活选择方法求解.4、D【解析】根据输出结果可得输出时,结合执行逻辑确定输入k的可能值,即可知答案.【详解】由,得,则输人的可能为.∴结合选项知:D符合要求.故选:D.5、A【解析】由程序图可得,,再分段求解函数的值域,即可求解【详解】由程序图可得,当时,,,当时,,,综上所述,的取值范围为,故选:A6、B【解析】直接利用空间向量垂直的坐标运算计算即可.【详解】因为,所以,即,解得.故选:B7、C【解析】根据导数的定义即可求解.【详解】.故选:C.8、B【解析】构造出长方体,取中点连接然后利用临界位置分情况讨论即可.【详解】如图,构造出长方体,取中点,连接则所有过点与成角的平面,均与以为轴的圆锥相切,过点绕且与成角,当与水平面垂直且在面的左侧(在长方体的外面)时,与面所成角为75°(与面成45°,与成30°),过点绕旋转,转一周,90°显然最大,到了另一个边界(在面与之间)为15度,即与面所成角从75°→90°→15°→90°→75°变化,此过程中,有两次角为30

,综上,这样的平面α有2个,故选:B.9、C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.10、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C11、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B12、C【解析】利用圆心距与半径的关系确定正确选项.【详解】圆的圆心为,半径为,圆的圆心为,半径为,圆心距为,,所以两圆相交.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、24【解析】根据题意列方程组求解即可【详解】由题意得所以,,.故答案为:2414、【解析】利用焦点坐标为求解即可【详解】因为,所以,所以焦点的坐标为,故答案:15、20【解析】求出大椭圆的离心率等于小椭圆的离心率,然后求解小椭圆的长轴长【详解】在大椭圆中,,,则,.因为两椭圆扁平程度相同,所以离心率相等,所以在小椭圆中,,结合,得,所以小椭圆的长轴长为20.故填:20.【点睛】本题考查椭圆的简单性质的应用,对椭圆相似则离心率相等这一基础知识的考查16、【解析】函数有两个不同零点即y=a与g(x)=图像有两个交点,画出近似图象即得a的范围﹒【详解】∵函数有且仅有两个不同的零点,令,则y=a与g(x)=图像有两个交点,∵,∴当时,,单调递减,当时,,单调递增,∴当时,,作出函数与的图象,∴当时,y=a与g(x)有两个交点﹒故答案为:﹒三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用表面积公式直接计算得到答案.(2)连接和,,故即为异面直线与所成角,证明,根据长度关系得到答案.【小问1详解】【小问2详解】如图所示:连接和,,故即为异面直线与所成角,,,,故平面,平面,故,,故,直角中,,,,故异面直线与所成角的大小为.18、(1)(2)在和内为减函数,在和内为增函数【解析】(1)对求导得,因为在处取得极值,所以,即,解得;(2)由(1)得,,故,令,解得或,当时,,故为减函数,当时,,故为增函数,当时,,故为减函数,当时,,故为增函数,综上所知:和是函数单调减区间,和是函数的单调增区间.19、(1);(2)8.【解析】(1)由等轴双曲线的一条渐近线方程为,再由点到直线距离公式求解即可;(2)求得直线方程代入抛物线,结合焦点弦长求解即可.【详解】(1)由等轴双曲线的一条渐近线方程为,且顶点到渐近线的距离为,可得,解得,故双曲线方程(2)抛物线的焦点为直线的方程为,即与抛物线方程联立,得,消,整理得,设其两根为,,且由抛物线的定义可知,所以,线段的长是【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式20、(1)①,在上单减;②,在上单增,单减;(2).【解析】(1),根据函数定义域,分,,讨论求解;(2)根据(1)知:分,,,讨论求解.【小问1详解】解:(1)定义域,①时,成立,所以在上递减;②时,当时,,当时,,所以在上单增,单减;【小问2详解】由(1)知:时,在单减,所以;时,在单减,所以;时,在上单增,上递减,所以;时,在单增,所以;综上:.21、;【解析】将条件①②③转化为的形式,列方程组,并求解,写出的通项公式,从而表示出,利用裂项相消法求和.【详解】选①:设等差数列首项为,公差为,因为,,所以,所以,所以,所以选②:设等差数列首项为,公差为,因为,,所以,所以,所以,所以选③:设等差数列首项为,公差为,因为,,所以,所以,所以,所以【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和(2)错位相减:用于等差数列与等比数列的积数列的求和(3)分组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论