福建省宁德市2026届数学高一上期末预测试题含解析_第1页
福建省宁德市2026届数学高一上期末预测试题含解析_第2页
福建省宁德市2026届数学高一上期末预测试题含解析_第3页
福建省宁德市2026届数学高一上期末预测试题含解析_第4页
福建省宁德市2026届数学高一上期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省宁德市2026届数学高一上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的减函数,若对于任意,均有,,则不等式的解集为()A. B.C. D.2.一条直线与两条平行线中的一条为异面直线,则它与另一条()A.相交 B.异面C.相交或异面 D.平行3.命题“∀x∈R,都有x2-x+3>0A.∃x∈R,使得x2-x+3≤0 B.∃x∈RC.∀x∈R,都有x2-x+3≤0 D.∃x∉R4.如图,正方体的棱长为,,是线段上的两个动点,且,则下列结论错误的是A.B.直线、所成的角为定值C.∥平面D.三棱锥的体积为定值5.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.6.“ω=2”是“π为函数的最小正周期”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设,则()A. B.C. D.8.下列命题中,真命题是.A.xR,x2+1=x B.xR,x2+1<2xC.xR,x2+1>x D.xR,x2+2x>19.关于的一元二次不等式的解集为()A.或 B.C.或 D.10.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到二、填空题:本大题共6小题,每小题5分,共30分。11.设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为______________12.已知角的终边过点,则__________13.如图所示,正方体的棱长为,分别是棱,的中点,过直线的平面分别与棱.交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中真命题的序号为___________.14.已知函数的最大值为,且图像的两条相邻对称轴之间的距离为,求:(1)函数的解析式;(2)当,求函数的单调递减区间15.已知,,则ab=_____________.16.无论实数k取何值,直线kx-y+2+2k=0恒过定点__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数f(1)求函数fx(2)求函数fx(3)求函数fx在闭区间0,π218.已知函数,且满足.(1)判断函数在上的单调性,并用定义证明;(2)设函数,求在区间上的最大值;(3)若存在实数m,使得关于x的方程恰有4个不同的正根,求实数m的取值范围.19.(1)已知,,求;(2)已知,,求、的值;(3)已知,,且,求的值.20.已知(1)求的值(2)求的值.(结果保留根号)21.在2020年初,新冠肺炎疫情袭击全国,丽水市某村施行“封村”行动.为了更好地服务于村民,村卫生室需建造一间地面面积为30平方米且墙高为3米的长方体供给监测站.供给监测站的背面靠墙,无需建造费用,因此甲工程队给出的报价为:正面新建墙体的报价为每平方米600元,左右两面新建墙体报价为每平方米360元,屋顶和地面以及其他报价共计21600元,设屋子的左右两侧墙的长度均为x米.(1)当左右两面墙的长度为多少时,甲工程队报价最低,最低报价为多少?(2)现有乙工程队也参与此监测站建造竞标,其给出的整体报价为元,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据已知等式,结合函数的单调性进行求解即可.【详解】令时,,由,因为是定义在上的减函数,所以有,故选:D2、C【解析】如下图所示,三条直线平行,与异面,而与异面,与相交,故选C.3、A【解析】根据全称命题的否定表示方法选出答案即可.【详解】命题“∀x∈R,都有x2“∃x∈R,使得x2故选:A.4、B【解析】在A中,∵正方体∴AC⊥BD,AC⊥,∵BD∩=B,∴AC⊥平面,∵BF⊂平面,∴AC⊥BF,故A正确;在B中,异面直线AE、BF所成的角不为定值,因为当F与重合时,令上底面顶点为O,点E与O重合,则此时两异面直线所成的角是;当E与重合时,此时点F与O重合,则两异面直线所成的角是,此二角不相等,故异面直线AE、BF所成的角不为定值.故B错误在C中,∵EF∥BD,BD⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD,故C正确;在D中,∵AC⊥平面,∴A到平面BEF的距离不变,∵B到EF的距离为1,,∴△BEF的面积不变,∴三棱锥A-BEF的体积为定值,故D正确;点睛:解决此类题型的关键是结合空间点线面的位置关系一一检验.5、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C6、A【解析】直接利用正弦型函数的性质的应用,充分条件和必要条件的应用判断A、B、C、D的结论【详解】解:当“ω=2”时,“函数f(x)=sin(2x﹣)的最小正周期为π”当函数f(x)=sin(ωx﹣)的最小正周期为π”,故ω=±2,故“ω=2”是“π为函数的最小正周期”的充分不必要条件;故选:A7、B【解析】根据已知等式,利用指数对数运算性质即可得解【详解】由可得,所以,所以有,故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.8、C【解析】根据全称命题和特称命题的含义,以及不等式性质的应用,即可求解.【详解】对于A中,,所以,所以不正确;对于B中,,所以,所以不正确;对于C中,,所以,所以正确;对于D中,,所以不正确,故选C.【点睛】本题主要考查了全称命题与特称命题的真假判定,其中解答中正确理解全称命题和特称命题的含义,以及不等式性质的应用是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】根据一元二次不等式的解法,直接求解,即可得出结果.【详解】由得,解得或.即原不等式的解集为或.故选:A.10、D【解析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【详解】变换到,需要向右平移个单位.故选:D【点睛】函数图像平移异名化同名的公式:,.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】根据题中条件可先排除①,②两个图象,然后根据③,④两个图象都经过原点可求出a的两个值,再根据二次函数图象的开口方向就可确定a的值.【详解】∵b>0∴二次函数的对称轴不能为y轴,∴可排除掉①,②两个图象∵③,④两个图象都经过原点,∴a2﹣1=0,∴a=±1∵当a=1时,二次函数图象的开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故答案为:-1【点睛】本题考查了二次函数的图象和性质,做题时注意题中条件的利用,合理地利用排除法解决选择题12、【解析】∵角的终边过点(3,-4),∴x=3,y=-4,r=5,∴cos=故答案为13、①②④【解析】①连接,在正方体中,平面,所以平面平面,所以①是真命题;②连接MN,因为平面,所以,四边形MENF的对角线EF是定值,要使四边形MENF面积最小,只需MN的长最小即可,当M为棱的中点时,即当且仅当时,四边形MENF的面积最小;③因为,所以四边形是菱形,当时,的长度由大变小,当时,的长度由小变大,所以周长,是单调函数,是假命题;④连接,把四棱锥分割成两个小三棱锥,它们以为底,为顶点,因为三角形的面积是个常数,到平面的距离也是一个常数,所以四棱锥的体积为常函数;命题中真命题的序号为①②④考点:面面垂直及几何体体积公式14、(1);(2)和【解析】(1)根据降幂公式与辅助角公式化简函数解析式,然后由题意求解,从而求解出解析式;(2)根据(1)中的解析式,利用整体法代入化简计算函数的单调减区间,再由,给赋值,求出单调减区间.【小问1详解】化简函数解析式得,因为图像的两条相邻对称轴之间的距离为,即,且函数最大值为,所以且,得,所以函数解析式为.【小问2详解】由(1)得,,得,因为,所以函数的单调减区间为和15、1【解析】将化成对数形式,再根据对数换底公式可求ab的值.【详解】,.故答案为:1.16、【解析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出无论实数k取何值,直线kx-y+2+2k=0恒过定点【详解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程组,得∴无论实数k取何值,直线kx-y+2+2k=0恒过定点故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)π(2)π3+kπ,(3)fx在0,π2内的最大值为【解析】(1)利用三角恒等变换化简可得fx=sin2x-π(2)令π2+2k≤2x-π6≤3π2+2k,k∈Z(3)由0≤x≤π2,可得-π6≤2x-π6≤5π【小问1详解】f(x)=sin2x-cos2x+2cosxcos=-cos2x+2cosxcos=-cos2x+1+cos2x2+=32sin2x-12cos2x=sin2x-π函数f(x)的最小正周期为T=2π2=【小问2详解】令π2+2k≤2x-π6≤3π2+2k解得π3+k≤x≤5π6+k,函数f(x)的单调递减间为π3+kπ,【小问3详解】因为0≤x≤π2,-π6≤2x-π6≤当2x-π6=π2时,即x=π3时,f(x18、(1)见解析(2)时,.(3)【解析】(1)根据确定a.再任取两数,作差,通分并根据分子分母符号确定差的符号,最后根据定义确定函数单调性(2)先根据绝对值定义将函数化为分段函数,都可化为二次函数,再根据对称轴与定义区间位置关系确定最值,最后取两个最大值中较大值(3)先对方程变形得,设,转化为方程方程在有两个不等的根,根据二次函数图像,得实根分布条件,解得实数m的取值范围.试题解析:(1)由,得或0.因为,所以,所以.当时,,任取,且,则,因为,则,,所以在上为增函数;(2),当时,,因为,所以当时,;当时,,因为时,所以,所以当时,;综上,当即时,.(3)由(1)可知,在上为增函数,当时,.同理可得在上为减函数,当时,.方程可化为,即.设,方程可化为.要使原方程有4个不同的正根,则方程在有两个不等的根,则有,解得,所以实数m的取值范围为.19、(1);(2),;(3).【解析】(1)利用两角差的正切公式即可求解;(2)利用二倍角公式即可求解;(3)利用和差角公式即可求解.【详解】(1)因为,,所以,即.(2)因为,可得,所以,,因此,,.(3)由,则,,得.因为,所以.由,则,,得,由以及,得.因为,又,所以.20、(1);(2).【解析】(1)利用二倍角公式化简得,然后利用同角关系式即得;(2)利用两角差的正弦公式即求.【小问1详解】由,得,∵,,∴,∴,∴.【小问2详解】由(1)知,∴.21、(1)当左右两面墙的长度为5时,报价最低为43200

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论