2026届安徽省淮南市第一中学高二上数学期末达标检测模拟试题含解析_第1页
2026届安徽省淮南市第一中学高二上数学期末达标检测模拟试题含解析_第2页
2026届安徽省淮南市第一中学高二上数学期末达标检测模拟试题含解析_第3页
2026届安徽省淮南市第一中学高二上数学期末达标检测模拟试题含解析_第4页
2026届安徽省淮南市第一中学高二上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省淮南市第一中学高二上数学期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.2.圆心为的圆,在直线x﹣y﹣1=0上截得的弦长为,那么,这个圆的方程为()A. B.C. D.3.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为A. B.C. D.4.如图,直三棱柱的所有棱长均相等,P是侧面内一点,设,若P到平面的距离为2d,则点P的轨迹是()A.圆的一部分 B.椭圆的一部分C.抛物线的一部分 D.双曲线的一部分5.甲乙两名运动员在某项体能测试中的6次成绩统计如表:甲9816151514乙7813151722分别表示甲乙两名运动员这项测试成绩的平均数,分别表示甲乙两名运动员这项测试成绩的标准差,则有()A., B.,C., D.,6.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.7.实数且,,则连接,两点的直线与圆C:的位置关系是()A.相离 B.相切C.相交 D.不能确定8.函数在的图象大致为()A. B.C D.9.等差数列中,若,则()A.42 B.45C.48 D.5110.设斜率为2的直线l过抛物线()的焦点F,且和y轴交于点A,若(O为坐标原点)的面积为4,则抛物线方程为()A. B.C. D.11.已知等差数列中的、是函数的两个不同的极值点,则的值为()A. B.1C.2 D.312.如图,已知多面体,其中是边长为4的等边三角形,四边形是矩形,,平面平面,则点到平面的距离是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知p:“”为真命题,则实数a的取值范围是_________.14.已知直线与直线平行,则实数m的值为______15.命题“,”的否定是____________.16.“”是“”的________条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选择一项填空.)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求曲线在点处的切线方程;(2)求在区间上的最值.18.(12分)在正方体中,E,F分别是,的中点(1)求证:∥平面;(2)求平面与平面EDC所成的二面角的正弦值19.(12分)已知直线,圆.(1)求证:直线l恒过定点;(2)若直线l的倾斜角为,求直线l被圆C截得的弦长.20.(12分)已知抛物线的准线方程是.(Ⅰ)求抛物线方程;(Ⅱ)设直线与抛物线相交于,两点,为坐标原点,证明:.21.(12分)如图,在直三棱柱中,,,D为的中点(1)求证:平面;(2)求平面与平面的夹角的余弦值;(3)若E为的中点,求与所成的角22.(10分)已知首项为1的等比数列,满足(1)求数列的通项公式;(2)求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.2、A【解析】由垂径定理,根据弦长的一半及圆心到直线的距离求出圆半径,即可写出圆的标准方程.【详解】圆心到直线x﹣y﹣1=0的距离弦长,设圆半径为r,则故r=2则圆的标准方程为故选:A【点睛】本题主要考查直线与圆的位置关系和圆的标准方程,属于基础题.3、A【解析】根据题意可求出正方体的上底面与球相交所得截面圆的半径为4cm,再根据截面圆半径,球的半径以及球心距的关系,即可求出球的半径,从而得到球的体积【详解】设球的半径为cm,根据已知条件知,正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面圆的距离为cm,所以由,得,所以球的体积为故选:A【点睛】本题主要考查球的体积公式的应用,以及球的结构特征的应用,属于基础题4、B【解析】取的中点,得出平面,作,在直角中,求得,以为原点,为轴,为轴建立平面直角坐标系,求得点的轨迹方程,即可求解.【详解】如图所示,取的中点,连接,得到平行于平面且过点的平面,如图(1)(2)所示,作,则P1与E重合,则,在直角中,可得,在图(3)中,设直三棱柱的所有棱长均为,且,以为原点,为轴,为轴建立平面直角坐标系,则,所以,即所以,整理得,所以点P的轨迹是椭圆的一部分.故选:B.5、B【解析】根据给定统计表计算、,再比较、大小判断作答.【详解】依题意,,,,,所以,.故选:B6、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D7、B【解析】由题意知,m,n是方程的根,再根据两点式求出直线方程,利用圆心到直线的距离与半径之间的关系即可求解.【详解】由题意知,m,n是方程的根,,,过,两点的直线方程为:,圆心到直线的距离为:,故直线和圆相切,故选:B【点睛】本题考查了直线与圆的位置关系,考查了计算求解能力,属于基础题.8、D【解析】函数|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数故选:D.9、C【解析】结合等差数列的性质求得正确答案.【详解】依题意是等差数列,,.故选:C10、B【解析】根据抛物线的方程写出焦点坐标,求出直线的方程、点的坐标,最后根据三角形面积公式进行求解即可.【详解】抛物线的焦点的坐标为,所以直线的方程为:,令,解得,因此点的坐标为:,因为面积为4,所以有,即,,因此抛物线的方程为.故选:B.11、C【解析】对求导,由题设及根与系数关系可得,再根据等差中项的性质求,最后应用对数运算求值即可.【详解】由题设,,由、是的两个不同的极值点,所以,又是等差数列,所以,即,故.故选:C12、C【解析】利用面面垂直性质结合已知寻找两两垂直的三条直线建立空间直角坐标系,用向量法可解.【详解】取的中点O,连接OB,过O在平面ACDE面内作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是边长为4的等边三角形,四边形ACDE是矩形,∴以O为原点,OA,OB,OF分别为x,y,z轴,建立如图所示空间直角坐标系则,,,设平面ABD的单位法向量,,由解得取,则∴点C到平面ABD的距离.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据条件将问题转化不等式在上有解,则,由此求解出的取值范围.【详解】因为“”为真命题,所以不等式在上有解,所以,所以,故答案为:.14、【解析】由两直线平行的判定可得求解即可,注意验证是否出现直线重合的情况.【详解】由题设,,解得,经检验满足题设.故答案为:15、,【解析】根据全称命题量词的否定即可得出结果.【详解】命题“”的否定是“,”故答案为:16、充分不必要【解析】由不等式的性质可知,由得,反之代入进行验证,然后根据充分性与必要性的定义进行判断,即可得出所要的答案【详解】解:由不等式的性质可知,由得,故“”成立可推出“”,而,当,则,所以“”不能保证“”,故“”是“”成立的充分不必要条件.故答案为:充分不必要【点睛】本题考查充分条件与必要条件的判断,结合不等式的性质,属于较简单题型三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)最小值为0,最大值为4【解析】(1)利用导数求得切线方程.(2)结合导数求得在区间上的最值.【小问1详解】,所以曲线在点处的切线方程为.【小问2详解】,所以在区间递增;在区间递减,,所以在区间上的最小值为,最大值为.18、(1)见解析;(2).【解析】(1)连接,,连接,证明CE∥即可;(2)建立空间直角坐标系,求出平面与平面EDC的法向量,利用向量法求二面角的正弦值.【小问1详解】如图,连接,,连接,∵BC∥且BC=,∴四边形是平行四边形,∴∥且,∵E是中点,G是中点,∴∥CG且,∴四边形是平行四边形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小问2详解】如图建立空间直角坐标系,设正方体的棱长为2,则,则,设平面的法向量为,则,取;设平面EDC的法向量为,则,取,则;设平面与平面EDC所成的二面角的平面角为α,则,∴19、(1)证明见解析(2)【解析】(1)直线方程变形后令的系数等于0消去参数即可求得定点坐标.(2)先求出圆心C到直线l距离,然后用勾股定理即可求得弦长.【小问1详解】,联立得:即直线l过定点(.【小问2详解】由题意直线l的斜率,即,∴,圆,圆心,半径,圆心C到直线l的距离,所以直线l被圆C所截得的弦长为.20、(Ⅰ)(Ⅱ)详见解析【解析】(Ⅰ)利用排趋性的准线方程求出p,即可求解抛物线的方程;(Ⅱ)直线y=k(x-2)(k≠0)与抛物线联立,通过韦达定理求解直线的斜率关系即可证明OM⊥ON试题解析:(Ⅰ)解:因为抛物线的准线方程为,所以,解得,所以抛物线的方程为.(Ⅱ)证明:设,.将代入,消去整理得.所以.由,,两式相乘,得,注意到,异号,所以.所以直线与直线的斜率之积为,即.考点:直线与抛物线的位置关系;抛物线的标准方程21、(1)证明见解析(2)(3)【解析】(1)连接,交于O,连接OD,根据中位线的性质,可证,根据线面平行的判定定理,即可得证;(2)如图建系,求得各点坐标,进而可求得平面与平面法向量,根据二面角的向量求法,即可得答案;(3)求得坐标,根据线线角的向量求法,即可得答案.【小问1详解】连接,交于O,连接OD,则O为的中点,在中,因为O、D分别为、BC中点,所以,又因为平面,平面,所以平面【小问2详解】由题意得,两两垂直,以B为原点,为x,y,z轴正方向建系,如图所示:设,则,所以,则,,因为平面在平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论