版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市邵武市四中2026届数学高二上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知曲线的方程为,则下列说法正确的是()①曲线关于坐标原点对称;②曲线是一个椭圆;③曲线围成区域的面积小于椭圆围成区域的面积.A.① B.①②C.③ D.①③2.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.3.已知椭圆的左右焦点分别为,直线与C相交于M,N两点(其中M在第一象限),若M,,N,四点共圆,且直线倾斜角不小于,则椭圆C的离心率e的取值范围是()A. B.C. D.4.若直线与圆相切,则()A. B.或2C. D.或5.如图,在棱长为1的正方体中,M是的中点,则点到平面MBD的距离是()A. B.C. D.6.已知函数在区间上是增函数,则实数的取值范围是()A. B.C. D.7.在下列命题中正确的是()A.已知是空间三个向量,则空间任意一个向量总可以唯一表示为B.若所在的直线是异面直线,则不共面C.若三个向量两两共面,则共面D.已知A,B,C三点不共线,若,则A,B,C,D四点共面8.若数列1,a,b,c,9是等比数列,则实数b的值为()A.5 B.C.3 D.3或9.已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A. B.C. D.10.已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A. B.C. D.11.设,,若,其中是自然对数底,则()A. B.C. D.12.口袋中装有大小形状相同的红球3个,白球3个,小明从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次取得白球的概率为()A.0.4 B.0.5C.0.6 D.0.75二、填空题:本题共4小题,每小题5分,共20分。13.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________14.已知双曲线的渐近线上两点A,B的中点坐标为(2,2),则直线AB的斜率是_________.15.在平面直角坐标系中,直线与的交点为,以为圆心作圆,圆上的点到轴的最小距离为(Ⅰ)求圆的标准方程;(Ⅱ)过点作圆的切线,求切线的方程16.古希腊数学家阿波罗尼斯发现:平面内到两个定点,的距离之比为定值的点的轨迹是圆.人们将这个圆称为阿波罗尼斯圆,简称阿氏圆.已知点,,动点满足,记动点的轨迹为曲线,给出下列四个结论:①曲线方程为;②曲线上存在点,使得到点的距离为;③曲线上存在点,使得到点的距离大于到直线的距离;④曲线上存在点,使得到点与点的距离之和为.其中所有正确结论的序号是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,底面ABCD,,,且,,点E为棱PC的动点.(1)当点E是棱PC的中点时,求直线BE与平面PBD所成角的正弦值;(2)若E为棱PC上任一点,满足,求二面角P-AB-E的余弦值.18.(12分)已知函数.(1)设x=2是函数f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当时,.19.(12分)如图,中,且,将沿中位线EF折起,使得,连结AB,AC,M为AC的中点.(1)证明:平面ABC;(2)求二面角的余弦值.20.(12分)已知椭圆:的一个焦点坐标为,离心率.(1)求椭圆的方程;(2)设为坐标原点,椭圆与直线相交于两个不同的点A、B,线段AB的中点为M.若直线OM的斜率为-1,求线段AB的长;(3)如图,设椭圆上一点R的横坐标为1(R在第一象限),过R作两条不重合直线分别与椭圆交于P、Q两点、若直线PR与QR的倾斜角互补,求直线PQ的斜率的所有可能值组成的集合.21.(12分)如图,在四棱锥中,底面,,,,,为上一点,且.请用空间向量知识解答下列问题:(1)求证:平面;(2)求平面与平面夹角的大小.22.(10分)若存在常数,使得对任意,,均有,则称为有界集合,同时称为集合的上界.(1)设,,试判断A、B是否为有界集合,并说明理由;(2)已知常数,若函数为有界集合,求集合的上界最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对于①在方程中换为,换为可判断;对于②分析曲线的图形是两个抛物线的部分组成的可判断;对于③在第一象限内,分析椭圆的图形与曲线图形的位置关系可判断.【详解】在曲线的方程中,换为,换为,方程不变,故曲线关于坐标原点对称所以①正确,当时,曲线的方程化为,此时当时,曲线的方程化为,此时所以曲线图形是两个抛物线的部分组成的,不是椭圆,故②不正确.当,时,设,设,则,(当且仅当或时等号成立)所以在第一象限内,椭圆的图形在曲线的上方.根据曲线和椭圆的的对称性可得椭圆的图形在曲线的外部(四个顶点在曲线上)所以曲线围成区域的面积小于椭圆围成区域的面积,故③正确.故选:D2、A【解析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.3、B【解析】设椭圆的半焦距为c,由椭圆的中心对称性和圆的性质得以为直径的圆与椭圆C有公共点,则有以,再根据直线倾斜角不小于得,由椭圆的定义得,由此可求得椭圆离心率的范围.【详解】解:设椭圆的半焦距为c,由椭圆的中心对称性和M,,N,四点共圆得,四边形必为一个矩形,即以为直径的圆与椭圆C有公共点,所以,所以,所以,因为直线倾斜角不小于,所以直线倾斜角不小于,所以,化简得,,因为,所以,所以,,又,因为,所以,所以,所以,所以.故选:B.4、D【解析】根据圆心到直线的距离等于半径列方程即可求解.【详解】由圆可得圆心,半径,因为直线与圆相切,所以圆心到直线的距离,整理可得:,所以或,故选:D.5、A【解析】等体积法求解点到平面的距离.【详解】连接,,则,,由勾股定理得:,,取BD中点E,连接ME,由三线合一得:ME⊥BD,则,故,设到平面MBD的距离是,则,解得:,故点到平面MBD的距离是.故选:A6、D【解析】由在上恒成立,再转化为求函数的取值范围可得【详解】由已知,在上是增函数,则在上恒成立,即,,当时,,所以故选:D7、D【解析】对于A,利用空间向量基本定理判断,对于B,利用向量的定义判断,对于C,举例判断,对于D,共面向量定理判断【详解】对于A,若三个向量共面,在平面,则空间中不在平面的向量不能用表示,所以A错误,对于B,因为向量是自由向量,是可以自由平移,所以当所在的直线是异面直线时,有可能共面,所以B错误,对于C,当三个向量两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C错误,对于D,因为A,B,C三点不共线,,且,所以A,B,C,D四点共面,所以D正确,故选:D8、C【解析】根据等比数列的定义,利用等比数列的通项公式求解【详解】解:设该等比数列公比为q,∵数列1,a,b,c,9是等比数列,∴,,∴,故,解得,∴故选:C9、C【解析】由题意可得且,从而求出点的坐标,将其代入双曲线方程中,即可得出离心率.【详解】由题意,四边形为菱形,如图,则且,分别为的左,右支上的点,设点在第二象限,在第一象限.由双曲线的对称性,可得,过点作轴交轴于点,则,所以,则,所以,所以,则,即,解得,或,由双曲线的离心率,所以取,则故选:C10、C【解析】由题意,设,直线方程为,则由点到直线的距离公式求出点到直线的距离,再联立直线与抛物线方程,由韦达定理及弦长公式求出,进而可得,结合即可得答案.【详解】解:因为抛物线的性质:在抛物线上任意一点处的切线方程为,设,所以在点处的切线方程为,在点B处的切线方程为,因为两条切线都经过点,所以,,所以直线的方程为,即,点到直线的距离为,联立直线与抛物线方程有,消去得,由得,,由韦达定理得,所以弦长,所以,整理得,即,解得,又所以.故选:C.11、A【解析】利用函数的单调性可得正确的选项.【详解】令,因为均为,故为上的增函数,由可得,故,故选:A.12、C【解析】求出第一次取得红球的事件、第一次取红球第二次取白球的事件概率,再利用条件概率公式计算作答.【详解】记“第一次取得红球”为事件A,“第二次取得白球”为事件B,则,,于是得,所以在第一次取得红球的条件下,第二次取得白球的概率为0.6.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、相交【解析】由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为,两圆的半径之差为1,半径之和为5,而1<<5,所以两圆的位置关系为相交14、##【解析】设出直线的方程,通过联立直线的方程和渐近线的方程,结合中点的坐标来求得直线的斜率.【详解】双曲线,,渐近线方程为,设直线的方程为,,由,由,所以,所以直线的斜率是.故答案为:15、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出点的坐标,设圆的半径为,圆上的点到轴的最小距离为1求得的值,由此可得出圆的标准方程;(Ⅱ)对切线的斜率是否存在进行分类讨论,当切线的斜率不存在时,可得切线方程为,验证即可;当切线的斜率存在时,可设所求切线的方程为,利用圆心到切线的距离等于圆的半径可求得的值,综合可得出所求切线的方程.【详解】(Ⅰ)联立方程组,解得,即点设圆的半径为,由于圆上的点到轴的最小距离为,则,所以,故圆的标准方程为;(Ⅱ)若切线的斜率不存在,则所求切线的方程为,圆心到直线的距离为,不合乎题意;若切线的斜率存在,可设切线的方程为,即,圆的圆心坐标为,半径为,由题意可得,整理得,解得或故所求切线方程为或【点睛】本题考查圆的标准方程的求解,同时也考查了过圆外一点的圆的切线方程的求解,考查计算能力,属于中等题.16、①④【解析】设,根据满足,利用两点间距离公式化简整理,即可判断①是否正确;由①可知,圆上的点到的距离的范围为,进而可判断②是否正确;设,根据题意可知,再根据在曲线上,可得,由此即可判断③是否正确;由椭圆的的定义,可知在椭圆上,再根据椭圆与曲线的位置关系,即可判断④是否正确.【详解】设,因为满足,所以,整理可得:,即,所以①正确;对于②中,由①可知,点在圆的外部,因为到圆心的距离,半径为,所以圆上的点到的距离的范围为,而,所以②不正确;对于③中,假设存在,使得到点的距离大于到直线的距离,又,到直线的距离,所以,化简可得,又,所以,即,故假设不成立,故③不正确;对于④中,假设存在这样的点,使得到点与点的距离之和为,则在以点与点为焦点,实轴长为的椭圆上,即在椭圆上,易知椭圆与曲线有交点,故曲线上存在点,使得到点与点的距离之和为;所以④正确.故答案为:①④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意可得两两垂直,所以以为原点,以所在的直线分别为轴,建立空间直角坐标系,利用空间向量求解,(2)设,表示出点的坐标,然后根据求出的值,从而可得点的坐标,然后利用空间向量求二面角【小问1详解】因为底面ABCD,平面,所以因为,所以两两垂直,所以以为原点,以所在的直线分别为轴,建立空间直角坐标系,如图所示,因为,,点E为棱PC的动点,所以,所以,,设平面的法向量为,则,令,则设直线BE与平面PBD所成角为,则,所以直线BE与平面PBD所成角的正弦值为,【小问2详解】,因为E为棱PC上任一点,所以设,所以,因为,所以,解得,所以,设平面的法向量为,则,令,则,取平面的一个法向量为,设二面角P-AB-E的平面角为,由图可知为锐角,则,所以二面角P-AB-E余弦值为18、(1),的单调递减区间为,单调递增区间为;(2)证明见解析;【解析】(1)求出函数的定义域与导函数,依题意可得,即可求出参数的值,再根据导函数与函数的单调性的关系求出函数的单调区间;(2)依题意可得,令,即证,,又,所以即证,令,利用导数说明其单调性,即可得解;【详解】解:(1)因为,定义域为,所以,因为是函数的极值点,所以,所以,解得,所以,令,则,所以在上单调递增,又,所以当时,,即,所以在上单调递减,当时,,即,所以上单调递增,综上可得的单调递减区间为,单调递增区间为;(2)证明:依题意即证,即证,令,则,所以即证,因为,所以即证,令,则,所以当时,,当时,所以,所以,所以当时,19、(1)证明见解析(2)【解析】(1)由勾股定理以及等腰三角形的性质得出,,再由线面垂直的判定证明即可;(2)以点为坐标原点,建立空间直角坐标系,由向量法得出面面角.【小问1详解】设,则,,平面平面,连接,,,,,即又,平面ABC【小问2详解】,以点为坐标原点,建立如下图所示的空间直角坐标系设平面的法向量为,平面的法向量为,令,则同理可得,又二面角为钝角,故二面角的余弦值为.20、(1);(2);(3).【解析】(1)根据给定条件求出椭圆长半轴长a即可计算得解.(2)将代入椭圆的方程,再结合给定条件求出k值即可计算出AB的长.(3)设出直线PR的方程,再与椭圆的方程联立求出点P坐标,同理可得点Q坐标,计算PQ的斜率即可作答.【小问1详解】依题意,椭圆的半焦距c=1,而,解得,则,所以椭圆的方程是:.【小问2详解】由消去y并整理得:,解得,,于是得线段AB的中点,直线OM斜率为,解得,因此,,所以线段AB的长为.【小问3详解】由(1)知,点,依题意,设直线PR的斜率为,直线PR方程为:,由消去y并整理得,,设点,则有,显然直线QR的斜率为-t,设点,同理有,于是得直线PQ的斜率,所以直线PQ的斜率的所有可能值组成的集合.【点睛】方法点睛:求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定,的值,结合焦点位置可写出椭圆方程②待定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年东源县卫生健康局公开招聘高层次和急需紧缺人才备考题库完整答案详解
- 2026年建筑行业社保缴纳合同
- 2025年北京协和医院肿瘤内科合同制科研助理招聘备考题库完整参考答案详解
- 2026年航空自由合同
- 天津2025年民生银行天津分行社会招聘备考题库有答案详解
- 交通运输部路网监测与应急处置中心2026年度公开招聘备考题库及答案详解1套
- 中国信息通信研究院2026届校园招聘80人备考题库有答案详解
- 江西省交通投资集团有限责任公司2025年校园招聘笔试笔试历年参考题库及答案
- 2024年水利部黄河水利委员会事业单位招聘高校毕业生考试真题
- 2025年中国农业银行研发中心社会招聘7人备考题库及答案详解一套
- 2025年中共湛江市委巡察服务保障中心、湛江市清风苑管理中心公开招聘事业编制工作人员8人备考题库完整参考答案详解
- 2025年产业融合发展与区域经济一体化进程研究可行性研究报告
- 医保科工作流程管理标准化方案
- 2025呼伦贝尔莫旗消防救援大队招聘消防文员(公共基础知识)综合能力测试题附答案解析
- 《国家赔偿法》期末终结性考试(占总成绩50%)-国开(ZJ)-参考资料
- 社会能力训练教程
- 广东省广州市番禺区2024-2025学年七年级上学期语文期末考试试卷(含答案)
- 2025年河南高二政治题库及答案
- 创新激励机制
- 产品成熟度评估标准文档
- 2025年浙江衢州龙游经济开发区下属国资公司公开招聘普通岗位合同制员工11人笔试考试参考题库附答案解析
评论
0/150
提交评论