版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三都水族自治县2025届高三第一次调研测试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数是奇函数,且,若对,恒成立,则的取值范围是()A. B. C. D.2.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有()种.A.360 B.240 C.150 D.1203.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.24.已知某几何体的三视图如图所示,则该几何体的体积是()A. B.64 C. D.325.设数列是等差数列,,.则这个数列的前7项和等于()A.12 B.21 C.24 D.366.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数 B.,a为任意非零实数C.a、b均为任意实数 D.不存在满足条件的实数a,b7.函数的部分图像大致为()A. B.C. D.8.设命题p:>1,n2>2n,则p为()A. B.C. D.9.已知非零向量,满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解:10.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)11.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8 B.9 C.10 D.1112.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.中,角的对边分别为,且成等差数列,若,,则的面积为__________.14.已知x,y满足约束条件x-y-1≥0x+y-3≤02y+1≥0,则15.若椭圆:的一个焦点坐标为,则的长轴长为_______.16.在平行四边形中,已知,,,若,,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.18.(12分)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆.(1)求曲线C1的普通方程和C2的直角坐标方程;(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围.19.(12分)在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;(Ⅱ)设直线与曲线C交于P,Q两点,求的值.20.(12分)如图,在平面四边形中,,,.(1)求;(2)求四边形面积的最大值.21.(12分)等差数列的前项和为,已知,.(Ⅰ)求数列的通项公式及前项和为;(Ⅱ)设为数列的前项的和,求证:.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程以及曲线的直角坐标方程;(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
先根据函数奇偶性求得,利用导数判断函数单调性,利用函数单调性求解不等式即可.【详解】因为函数是奇函数,所以函数是偶函数.,即,又,所以,.函数的定义域为,所以,则函数在上为单调递增函数.又在上,,所以为偶函数,且在上单调递增.由,可得,对恒成立,则,对恒成立,,得,所以的取值范围是.故选:A.本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题.2.C【解析】
可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可.【详解】分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有.∴共有结对方式60+90=150种.故选:C.本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为.3.B【解析】
求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B利用的关系求双曲线的离心率,是基础题.4.A【解析】
根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.5.B【解析】
根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,,所以,即,又,所以,,故故选:B本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.6.A【解析】
求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.7.A【解析】
根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【详解】解:因为,所以的定义域为,则,∴为偶函数,图象关于轴对称,排除选项,且当时,,排除选项,所以正确.故选:A.本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.8.C【解析】根据命题的否定,可以写出:,所以选C.9.C【解析】
根据向量的数量积运算,由向量的关系,可得选项.【详解】,,∴等价于,故选:C.本题考查向量的数量积运算和命题的充分、必要条件,属于基础题.10.C【解析】
先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.11.B【解析】
根据题意计算,,,解不等式得到答案.【详解】∵是以1为首项,2为公差的等差数列,∴.∵是以1为首项,2为公比的等比数列,∴.∴.∵,∴,解得.则当时,的最大值是9.故选:.本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.12.C【解析】
设,则,,,设,根据化简得到,得到答案.【详解】设,则,,,则,设,则,两式相减得到:,,,即,,,故,即,故,故.故选:.本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.二、填空题:本题共4小题,每小题5分,共20分。13..【解析】
由A,B,C成等差数列得出B=60°,利用正弦定理得进而得代入三角形的面积公式即可得出.【详解】∵A,B,C成等差数列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案为:本题考查了等差数列的性质,三角形的面积公式,考查正弦定理的应用,属于基础题.14.3【解析】
先根据约束条件画出可行域,再由y=2x-z表示直线在y轴上的截距最大即可得解.【详解】x,y满足约束条件x-y-1≥0x+y-3≤02y+1≥0,画出可行域如图所示.目标函数z=2x-y,即平移直线y=2x-z,截距最大时即为所求.2y+1=0x-y-1=0点A(12,z在点A处有最小值:z=2×1故答案为:32本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法.15.【解析】
由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或由表示的是椭圆,则,所以,则椭圆方程为所以.故答案为:.本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对的两个值进行取舍.16.【解析】
设,则,得到,,利用向量的数量积的运算,即可求解.【详解】由题意,如图所示,设,则,又由,,所以为的中点,为的三等分点,则,,所以.本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)【解析】
(1)先求导,再对m分类讨论,求出的单调性;(2)对m分三种情况讨论求函数在区间上的最小值即得解.【详解】(1)若,当时,;当时.,所以在上单调递增,在上单调递减若.在R上单调递增若,当时,;当时.,所以在上单调递增,在上单调递减(2)由(1)可知,当时,在上单调递增,则.则不合题意当时,在上单调递减,在上单调递增.则,即又因为单调递增,且,故综上,本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.18.(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】
(Ⅰ)消去参数φ可得C1的直角坐标方程,易得曲线C2的圆心的直角坐标为(0,2),可得C2的直角坐标方程;(Ⅱ)设M(3cosφ,sinφ),由三角函数和二次函数可得|MC2|的取值范围,结合圆的知识可得答案.【详解】(1)消去参数φ可得C1的普通方程为y2=1,∵曲线C2是圆心为(2,),半径为1的圆,曲线C2的圆心的直角坐标为(0,2),∴C2的直角坐标方程为x2+(y﹣2)2=1;(2)设M(3cosφ,sinφ),则|MC2|,∵﹣1≤sinφ≤1,∴1≤|MC2|,由题意结合图象可得|MN|的最小值为1﹣1=0,最大值为1,∴|MN|的取值范围为[0,1].本题考查椭圆的参数方程,涉及圆的知识和极坐标方程,属中档题.19.(Ⅰ)(t为参数),;(Ⅱ)1.【解析】
(Ⅰ)直接由已知写出直线l1的参数方程,设N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由题意可得,即ρ=4cosθ,然后化为普通方程;(Ⅱ)将l1的参数方程代入C的直角坐标方程中,得到关于t的一元二次方程,再由参数t的几何意义可得|AP|•|AQ|的值.【详解】(Ⅰ)直线l1的参数方程为,(t为参数)即(t为参数).设N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),则,即,即ρ=4cosθ,∴曲线C的直角坐标方程为x2-4x+y2=0(x≠0).(Ⅱ)将l1的参数方程代入C的直角坐标方程中,得,即,t1,t2为方程的两个根,∴t1t2=-1,∴|AP|•|AQ|=|t1t2|=|-1|=1.本题考查简单曲线的极坐标方程,考查直角坐标方程与直角坐标方程的互化,训练了直线参数方程中参数t的几何意义的应用,是中档题.20.(1);(2)【解析】
(1)根据同角三角函数式可求得,结合正弦和角公式求得,即可求得,进而由三角函数(2)设根据余弦定理及基本不等式,可求得的最大值,结合三角形面积公式可求得的最大值,即可求得四边形面积的最大值.【详解】(1),则由同角三角函数关系式可得,则,则,所以.(2)设在中由余弦定理可得,代入可得,由基本不等式可知,即,当且仅当时取等号,由三角形面积公式可得,所以四边形面积的最大值为.本题考查了正弦和角公式化简三角函数式的应用,余弦定理及不等式式求最值的综合应用,属于中档题.21.(Ⅰ),(Ⅱ)见解析【解析】
(Ⅰ)根据等差数列公式直接计算得到答案.(Ⅱ),根据裂项求和法计算得到得到证明.【详解】(Ⅰ)等差数列的公差为,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文言文复习流程案鸿门宴
- 2024年六五普法法规知识竞赛考试的试题
- 企业安全生产培训步骤课件
- 2024年保安队长年终总结范文(32篇)
- 2025-2031年中国六维力矩传感器行业市场发展规模及未来前景研判报告
- 2026年邮储银行支行长员工激励考核办法含答案
- 2026年华为公司销售代表面试题全解析
- 2026年事务工作中的问题解决能力提升
- 2026年旅游行业客服面试题及答案解析
- 2026年酒店客房服务员面试考核指南
- 结构件通用检验规范
- 高考生物学二轮复习备课素材:多变量实验题的类型及审答思维
- 水电基础知识培训(二)
- 沥青沥青混合料试验作业指导书
- 保险管选型指导书
- 建筑风景速写课件
- 第五届“国药工程杯”全国大学生制药工程设计竞赛
- 三年级上册英语素材-复习要点 Join in剑桥英语
- Q∕SY 1275-2010 油田污水回用湿蒸汽发生器水质指标
- GB∕T 7758-2020 硫化橡胶 低温性能的测定 温度回缩程序(TR 试验)
- 最新烟花爆竹仓库安全风险分级管控资料
评论
0/150
提交评论