人教版中学七年级数学下册期末考试题及解析_第1页
人教版中学七年级数学下册期末考试题及解析_第2页
人教版中学七年级数学下册期末考试题及解析_第3页
人教版中学七年级数学下册期末考试题及解析_第4页
人教版中学七年级数学下册期末考试题及解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版中学七年级数学下册期末考试题及解析一、选择题1.的算术平方根为()A. B. C. D.2.下列车标,可看作图案的某一部分经过平移所形成的是()A. B. C. D.3.若点在第四象限,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是()A.1 B.2 C.3 D.45.如图,,若,,,则下列说法正确的是()A. B. C. D.6.下列说法错误的是()A.的平方根是 B.的值是C.的立方根是 D.的值是7.在同一个平面内,为50°,的两边分别与的两边平行,则的度数为().A.50° B.40°或130° C.50°或130° D.40°8.如图,在平面直角坐标系中,点.点第次向上跳动个单位至点,紧接着第次向左跳动个单位至点,第次向上跳动个单位至点,第次向右跳动个单位至点,第次又向上跳动个单位至点,第次向左跳动个单位至点,…….照此规律,点第次跳动至点的坐标是()A. B. C. D.九、填空题9.36的平方根是______,81的算术平方根是______.十、填空题10.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则(m+n)2020的值是_____.十一、填空题11.如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.十二、填空题12.如图将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠2=70°,则∠1的度数是___________.十三、填空题13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC,,,点D是AB边上的固定点(),请在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,使EF与三角形ABC的一边平行,则为________度.十四、填空题14.已知M是满足不等式的所有整数的和,N是满足不等式x≤的最大整数,则M+N的平方根为________.十五、填空题15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.十六、填空题16.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为_____________.十七、解答题17.(1)计算:(2)比较与-3的大小十八、解答题18.求满足下列各式的未知数.(1).(2).十九、解答题19.如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补.请将小华的想法补充完整:∵和交于点.∴;()而是的中点,那么,又已知,∴(),∴,(全等三角形对应边相等)∴,()∴,()∴和互补.()二十、解答题20.如图,三角形在平面直角坐标系中.(1)请写出三角形各点的坐标;(2)求出三角形的面积;(3)若把三角形向上平移2个单位,再向左平移1个单位得到三角形,在图中画出平移后三角形.二十一、解答题21.已知某正数的两个不同的平方根是3a﹣14和a+2;b+11的立方根为﹣3;c是的整数部分;(1)求a+b+c的值;(2)求3a﹣b+c的平方根.二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F.(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系二十四、解答题24.如图1,E点在BC上,∠A=∠D,AB∥CD.(1)直接写出∠ACB和∠BED的数量关系;(2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E;(3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由.二十五、解答题25.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且(1)直接写出的面积;(2)如图②,若,作的平分线交于,交于,试说明;(3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的定义求解.【详解】解:因为,所以的算术平方根为.故选C.【点睛】本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义.2.D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D.【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义.3.A【分析】首先得出第四象限点的坐标性质,进而得出Q点的位置.【详解】解:∵点P(a,b)在第四象限,∴a>0,b<0,∴-b>0,∴点Q(-b,a)在第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确;经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE∥CD∴∠2+∠C=180°,∠3+∠D=180°∵∠2=50°,∠3=120°∴∠C=130°,∠D=60°又∵BE∥AF,∠1=40°∴∠A=180°-∠1=140°,∠F=∠3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.B【分析】根据算术平方根与平方根、立方根的性质逐项判断即可得.【详解】A、的平方根是,此项说法正确;B、的值是4,此项说法错误;C、的立方根是,此项说法正确;D、的值是,此项说法正确;故选:B.【点睛】本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键.7.C【分析】如图,分两种情况进行讨论求解即可.【详解】解:①如图所示,AC∥BF,AD∥BE,∴∠A=∠FOD,∠B=∠FOD,∴∠B=∠A=50°;②如图所示,AC∥BF,AD∥BE,∴∠A=∠BOD,∠B+∠BOD=180°,∴∠B+∠A=180°,∴∠B=130°,故选C.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8.A【分析】设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n+1,2n),Pn+1(n+1,2n+1),P4n+2(-n-1,2n+1),P4n+3(-n-1,2解析:A【分析】设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n+1,2n),Pn+1(n+1,2n+1),P4n+2(-n-1,2n+1),P4n+3(-n-1,2n+2),依此规律结合200=50×4,即可得出点P200的坐标.【详解】解:设第n次跳动至点Pn,观察发现:P(1,0),P1(1,1),P2(-1,1),P3(-1,2),P4(2,2),P5(2,3),P6(-2,3),P7(-2,4),P8(3,4),P9(3,5),...,∴P4n+1(n+1,2n+1),P4n+2(-n-1,2n+1),P4n+3(-n-1,2n+2),P4n(n+1,2n),(n为自然数),∵200=50×4,∴P200(50+1,50×2),即(51,100).故选A.【点睛】本题考查了规律型中点的坐标,解题的关键是准确找到点的坐标变化规律.九、填空题9.±69.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.解析:±69.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.十、填空题10.1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.十一、填空题11.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.十二、填空题12.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.十三、填空题13.35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折解析:35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折叠可知:∠DEF=∠DEB,∴∠BDE=∠DEB,又∠B=30°,∴∠BDE=(180°-30°)=75°;当EF∥AC时,如图,∠C=∠BEF=50°,由折叠可知:∠BED=∠FED=25°,∴∠BDE=180°-∠B=∠BED=125°;如图,EF∥AC,则∠C=∠CEF=50°,由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,则∠CED+50°=180°-∠CED,解得:∠CED=65°,∴∠BDE=∠CED-∠B=65°-30°=35°;综上:∠BDE的度数为35°或75°或125°.【点睛】本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.十四、填空题14.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的最大整数,∴N=2,∴M+N的平方根为:±=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.十五、填空题15.(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=×1•h=2,解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.十六、填空题16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.十七、解答题17.(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3=,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即解析:(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3=,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即.故答案为(1)-1;(2).【点睛】本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键.十八、解答题18.(1)或;(2)【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.【详解】解:(1),即或,解得或.(2),,解得.解析:(1)或;(2)【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.【详解】解:(1),即或,解得或.(2),,解得.【点睛】本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.十九、解答题19.对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论.【详解】解析:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论.【详解】解:∵CF和BE相交于点O,∴∠COB=∠EOF;(对顶角相等),而O是CF的中点,那么CO=FO,又已知EO=BO,∴△COB≌△FOE(SAS),∴BC=EF,(全等三角形对应边相等),∴∠BCO=∠F,(全等三角形的对应角相等),∴AB∥DF,(内错角相等,两直线平行),∴∠ACE和∠DEC互补.(两直线平行,同旁内角互补),故答案为:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是解题的关键.二十、解答题20.(1),,;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;(3)根据点的平移规则,求得三点坐标解析:(1),,;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;(3)根据点的平移规则,求得三点坐标,连接对应线段即可.【详解】解:(1)根据平面直角坐标系中点的位置,可得:,,;(2)三角形的面积;(3)三角形向上平移2个单位,再向左平移1个单位得到三角形可得,,,连接,三角形如图所示:【点睛】此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键.二十一、解答题21.(1)-33;(2)【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解析:(1)-33;(2)【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解答.【详解】解:(1)∵某正数的两个平方根分别是3a-14和a+2,∴(3a-14)+(a+2)=0,∴a=3,又∵b+11的立方根为-3,∴b+11=(-3)3=-27,∴b=-38,又∵,∴,又∵c是的整数部分,∴c=2;∴a+b+c=3+(-38)+2=-33;(2)当a=3,b=-38,c=2时,3a-b+c=3×3-(-38)+2=49,∴3a-b+c的平方根是±7.【点睛】本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.二十二、解答题22.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1)=20(m),4×20=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=300,解得:a=±,∵3a表示长度,∴a>0,∴a=,∴这个长方形场地的周长为2(3a+5a)=16a=16(m),∵80=16×5=16×>16,∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义和三角形外角的性质可求∠M的度数;(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【详解】解:(1)如图1,作,,连结,,,,,,,,,,和的角平分线相交于,,,、分别是和的角平分线,,,,;(2)如图1,,,,,与两个角的角平分线相交于点,,,,,,;(3)由(2)结论可得,,,则.【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.二十四、解答题24.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A解析:(1)∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论