版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版七年级下册数学期末试卷测试卷(含答案解析)一、选择题1.1.96的算术平方根是()A.0.14 B.1.4 C. D.±1.42.下列图中的“笑脸”,由如图平移得到的是()A. B. C. D.3.下列各点中,在第三象限的点是()A. B. C. D.4.下列六个命题①有理数与数轴上的点一一对应②两条直线被第三条直线所截,内错角相等③平行于同一条直线的两条直线互相平行;④同一平面内,垂直于同一条直线的两条直线互相平行;⑤直线外一点到这条直线的垂线段叫做点到直线的距离⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.2个 B.3个 C.4个 D.5个5.如图,已知平分,平分,.下列结论正确的有()①;②;③;④若,则.A.1个 B.2个 C.3个 D.4个6.下列说法不正确的是()A.的平方根是± B.﹣9是81的平方根C.0.4的算术平方根是0.2 D.=﹣37.如图,直线,E为上一点,G为上一点,,垂足为F,若,则的度数为()A. B. C. D.8.如图,已知在平面直角坐标系中,点A坐标是(1,1).若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a2016+a2017+a2018的值为()A.1009 B.1010 C.1513 D.2521二、填空题9.若=x,则x的值为______.10.平面直角坐标系中,点关于轴的对称点是__________.11.如图中,,,AD、AF分别是的角平分线和高,________.12.将一副直角三角板如图放置(其中,),点在上,,则的度数是______.13.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=___°.14.任何实数a,可用表示不超过a的最大整数,如,现对50进行如下操作:50,这样对50只需进行3次操作后变为1,类似地,对72只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是______.15.若点P在轴上,则点P的坐标为____.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为__________.三、解答题17.计算:(1);(2).18.求下列各式中的x值:(1)169x2=144;(2)(x-2)2-36=0.19.如图所示,于点,于点,若,则吗?下面是推理过程,请你填空或填写理由.证明:∵于点,于点(已知),∴(____________),∴(________________________),∴(________________________),∵(已知)∴(____________)∵,∴______(______________________________).∴____________(等量代换)20.如图,的三个顶点坐标分别为,,.(1)在平面直角坐标系中,画出;(2)将向下平移个单位长度,得到,并画出,并写出点的坐标.21.数学张老师在课堂上提出一个问题:“通过探究知道:,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是多少,请表示出来.(2)a为的小数部分,b为的整数部分,求的值.(3)已知8+=x+y,其中x是一个正整数,0<y<1,求的值.二十二、解答题22.观察下图,每个小正方形的边长均为1,(1)图中阴影部分的面积是多少?边长是多少?(2)估计边长的值在哪两个整数之间.二十三、解答题23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)24.已知:直线∥,A为直线上的一个定点,过点A的直线交于点B,点C在线段BA的延长线上.D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在上,且在点B的左侧.(1)如图1,若∠BAD=25°,∠AED=50°,直接写出ABM的度数;(2)射线AF为∠CAD的角平分线.①如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明;②当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数.25.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且(1)直接写出的面积;(2)如图②,若,作的平分线交于,交于,试说明;(3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.26.模型与应用.(模型)(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根即可得出答案.【详解】解:∵,∴1.96的算术平方根是1.4,故选:B.【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都是由旋转得到的,D是由平移得到的.故选:D.【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都是由旋转得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标.【详解】解:∵第三象限的点的横坐标是负数,纵坐标也是负数,∴结合选项符合第三象限的点是(-2,-4).故选:D.【点睛】本题主要考查了点在第三象限内点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】利用实数的性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案.【详解】解:①实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;②两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意;③平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;④同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;⑤直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,假命题有4个,故选:C.【点睛】本题主要考查了命题与定理的知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大.5.C【分析】由三个已知条件可得AB∥CD,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC∥BD,可知③错误;由及平分,可得∠ACP=∠E,得AC∥BD,从而由平行线的性质易得,即④正确.【详解】∵平分,平分∴∠ACD=2∠ACP=2∠2,∠CAB=2∠1=2∠CAP∵∴∠ACD+∠CAB=2(∠1+∠2)=2×90゜=180゜∴故①正确∵∴∠ABE=∠CDB∵∠CDB+∠CDF=180゜∴故②正确由已知条件无法推出AC∥BD故③错误∵,∠ACD=2∠ACP=2∠2∴∠ACP=∠E∴AC∥BD∴∠CAP=∠F∵∠CAB=2∠1=2∠CAP∴故④正确故正确的序号为①②④故选:C.【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键.6.C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:0.4的算术平方根为,故C错误,故选C.【点睛】考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型.7.C【分析】根据内角和定理可知的度数,再根据平行线的性质即可求得的度数.【详解】∵∴∵∴∵∴.故选:C【点睛】本题主要考查了三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键.8.B【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数解析:B【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.【详解】解:由直角坐标系可知A(1,1),B(2,﹣1),C(3,2),D(4,﹣2),……,即a1=1,a2=1,a3=2,a4=﹣1,a5=3,a6=2,a7=4,a8=﹣2,……,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,∴a2016=﹣504,2018÷4=504……2,∴a2018=505,故a2016+a2017+a2018=1010,故选:B.【点睛】本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.二、填空题9.0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0的算术平方根为0,1的算术平方根解析:0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0的算术平方根为0,1的算术平方根为1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特解析:【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横坐标变为相反数;11.【分析】根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵A解析:【分析】根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵AF是的高,∴,在中,,∴.又∵在中,,,∴,又∵AD平分,∴,∴.故答案为:.【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等.12.【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED∥BC,解析:【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED∥BC,∴∠DEC=∠ACB=30°∴∠CEF=∠DEF-∠DEC=45°-30°=15°,∴∠AEF=180°-∠CEF=165°故答案为:165°.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM==115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM==115°.∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°,∴∠B+∠C=∠AMN+∠DNM=115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.14.255【分析】根据[a]的含义求出这个数的范围,再求最大值.【详解】解:设这个数是p,∵[x]=1.∴1≤x<2.∴1≤<2.∴1≤m<4.∴1≤<16.∴1≤p<256.∵p解析:255【分析】根据[a]的含义求出这个数的范围,再求最大值.【详解】解:设这个数是p,∵[x]=1.∴1≤x<2.∴1≤<2.∴1≤m<4.∴1≤<16.∴1≤p<256.∵p是整数.∴p的最大值为255.故答案为:255.【点睛】本题考查了估算无理数的大小,正确理解取整含义是求解本题的关键.15.(4,0).【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,m-1)在x轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P的坐解析:(4,0).【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,m-1)在x轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A3n横坐标为1−3n,∴A18横坐标为:1−3×6=−17,∴A18(−17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.(1)5;(2)4﹣.【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案.【详解】(1)原式=4+2﹣=5;(2)原式=3﹣(﹣)=3解析:(1)5;(2)4﹣.【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案.【详解】(1)原式=4+2﹣=5;(2)原式=3﹣(﹣)=3﹣+=4﹣.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(1)x=±;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=,解得:x=±.解析:(1)x=±;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=,解得:x=±.(2)(x-2)2-36=0,移项得:(x-2)2=36,开方得:x-2=6或x-2=-6解得:x=8或x=-4.故答案为(1)x=±;(2)x=8或x=-4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3.【分析】根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥E解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3.【分析】根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥EG,由平行线的性质得到∠1=∠2,等量代换得到∠E=∠2,由平行线的性质得到∠E=∠3,等量代换即可得到结论.【详解】证明:∵AD⊥BC于点D,EG⊥BC于点G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∵∠E=∠1(已知),∴∠E=∠2(等量代换),∵AD∥EG,∴∠E=∠3(两直线平行,同位角相等),∴∠2=∠3(等量代换),故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3.【点睛】本题主要考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键.20.(1)见解析;(2)见解析,A1(-2,-1).【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐解析:(1)见解析;(2)见解析,A1(-2,-1).【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐标即可.【详解】解:(1)如图:△ABC即为所求;(2)如图:即为所求,点A1的坐标为(-2,-1).【点睛】本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键.21.(1)-1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入解析:(1)-1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入求值即可.【详解】解:(1)∵1<<2∴的整数部分是1∴的小数部分是-1;(2)∵1<<2,2<<3∴的整数部分是1,的整数部分是2∴的小数部分是-1;∴a=-1,b=2∴==1(3)∵的小数部分是-1∴y=-1∴x=8+-(-1)=9∴===19【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键.二十二、解答题22.(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可解析:(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长;(2)根据,可以估算出边长的值在哪两个整数之间.【详解】(1)由图可知,图中阴影正方形的面积是:5×5−=17则阴影正方形的边长为:答:图中阴影部分的面积17,边长是(2)∵所以4<<5∴边长的值在4与5之间;【点睛】本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算.二十三、解答题23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;综上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.24.(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,解析:(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,运用角的等量代换换算即可.【详解】.解:(1)设在上有一点N在点A的右侧,如图所示:∵∴,∴∴(2)①.证明:设,.∴.∵为的角平分线,∴.∵,∴.∴.∴.②当点在点右侧时,如图:由①得:又∵∴∵∴当点在点左侧,在右侧时,如图:∵为的角平分线∴∵∴,∵∴∴∵∴又∵∴∴当点和在点左侧时,设在上有一点在点的右侧如图:此时仍有,∴∴综合所述:或【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.25.(1)3;(2)见解析;(3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)见解析;(3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 检察监督课件教学
- 内科护理学心理支持
- 金融安全与人工智能技术融合研究
- 护理质量管理体系优化
- 煤矿安全管理课件
- 2025河南艾瑞环保科技有限公司招聘3人备考核心试题附答案解析
- 国家公务员《行测》模拟试卷及答案参考
- 石城县2025年机关事业单位公开选调工作人员【40人】参考题库必考题
- 中国社会科学院文化发展促进中心年鉴与院史工作部非事业编制人员招聘2人考试备考题库附答案
- 贵州蔬菜集团有限公司市场流通部面向社会公开招聘考试题库必考题
- 8m深基坑土方开挖施工方案
- 2026年瓦工职业技能鉴定考试题库及答案
- 2025年云南省人民检察院聘用制书记员招聘(22人)笔试考试参考题库及答案解析
- 2025年广东省第一次普通高中学业水平合格性考试(春季高考)物理试题(含答案详解)
- 初一上册体育教案(2025-2026学年)
- 一般固废合同范本
- 胃肠外科围手术期护理要点
- 婚介协议书模板
- 【MOOC】数据结构与算法-北京大学 中国大学慕课MOOC答案
- 成人学历销售培训课件
- 民主测评及征求意见表
评论
0/150
提交评论