江苏省南通市通州区、海安县2026届高二数学第一学期期末联考模拟试题含解析_第1页
江苏省南通市通州区、海安县2026届高二数学第一学期期末联考模拟试题含解析_第2页
江苏省南通市通州区、海安县2026届高二数学第一学期期末联考模拟试题含解析_第3页
江苏省南通市通州区、海安县2026届高二数学第一学期期末联考模拟试题含解析_第4页
江苏省南通市通州区、海安县2026届高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市通州区、海安县2026届高二数学第一学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是双曲线的左焦点,为右顶点,是双曲线上的点,轴,若,则双曲线的离心率为()A. B.C. D.2.过双曲线的左焦点作x轴的垂线交曲线C于点P,为右焦点,若,则双曲线的离心率为()A. B.C. D.3.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是()A.2.3 B.2.5C.17.1 D.17.34.在四面体中,空间的一点满足,若共面,则()A. B.C. D.5.已知函数是定义在上奇函数,,当时,有成立,则不等式的解集是()A. B.C. D.6.曲线在点处的切线方程是A. B.C. D.7.已知圆的方程为,圆的方程为,其中.那么这两个圆的位置关系不可能为()A.外离 B.外切C.内含 D.内切8.某企业为节能减排,用万元购进一台新设备用于生产.第一年需运营费用万元,从第二年起,每年运营费用均比上一年增加万元,该设备每年生产的收入均为万元.设该设备使用了年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则等于()A. B.C. D.9.椭圆:与双曲线:的离心率之积为2,则双曲线的渐近线方程为()A. B.C. D.10.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题11.德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数f(x)的导函数,若,对,且.总有,则下列选项正确的是()A. B.C. D.12.已知抛物线=的焦点为F,M、N是抛物线上两个不同的点,若,则线段MN的中点到y轴的距离为()A.8 B.4C. D.9二、填空题:本题共4小题,每小题5分,共20分。13.定义在R上的函数满足,其中为自然对数的底数,,则满足的a的取值范围是__________.14.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有个点,相应的图案中点的个数记为,按此规律,则___________,___________.15.设集合,把集合中的元素按从小到大依次排列,构成数列,求数列的前项和___16.已知直线过点,,且是直线的一个方向向量,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题实数满足不等式,命题实数满足不等式.(1)当时,命题,均为真命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.18.(12分)已知抛物线C:,经过的直线与抛物线C交于A,B两点(1)求的值(其中为坐标原点);(2)设F为抛物线C的焦点,直线为抛物线C的准线,直线是抛物线C的通径所在的直线,过C上一点P()()作直线与抛物线相切,若直线与直线相交于点M,与直线相交于点N,证明:点P在抛物线C上移动时,恒为定值,并求出此定值19.(12分)已知命题实数满足成立,命题方程表示焦点在轴上的椭圆,若命题为真,命题或为真,求实数的取值范围20.(12分)已知数列满足,,数列前项和为.(1)求数列,的通项公式;(2)表示不超过的最大整数,如,设的前项和为,令,求证:.21.(12分)在等差数列中,已知公差,且成等比数列(1)求数列的通项公式;(2)记,求数列的前项和22.(10分)在中,角的对边分别为,已知,,且.(1)求角的大小;(2)若,面积为,试判断的形状,并说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据条件可得与,进而可得,,的关系,可得解.【详解】由已知得,设点,由轴,则,代入双曲线方程可得,即,又,所以,即,整理可得,故,解得或(舍),故选:C.2、D【解析】由题知是等腰直角三角形,,又根据通径的结论知,结合可列出关于的二次齐次式,即可求解离心率.【详解】由题知是等腰直角三角形,且,,又,,即,,,即,解得,,.故选:D.3、D【解析】将样本中心点代入回归方程后求解【详解】,,将样本中心点代入回归方程,得故选:D4、D【解析】根据四点共面的向量表示,可得结果.【详解】由共面知,故选:【点睛】本题主要考查空间中四点共面的向量表示,属基础题.5、A【解析】构造函数,分析该函数的定义域与奇偶性,利用导数分析出函数在上为增函数,从而可知该函数在上为减函数,综合可得出原不等式的解集.【详解】令,则函数的定义域为,且,则函数为偶函数,所以,,当时,,所以,函数在上为增函数,故函数在上为减函数,由等价于或:当时,由可得;当时,由可得.综上所述,不等式的解集为.故选:A.6、D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.7、C【解析】求出圆心距的取值范围,然后利用圆心距与半径的和差关系判断.【详解】由两圆的标准方程可得,,,;则,所以两圆不可能内含.故选:C.8、D【解析】设该设备第年的营运费为万元,利用为等差数列可求年平均盈利额,利用基本不等式可求其最大值.【详解】设该设备第年的营运费为万元,则数列是以2为首项,2为公差的等差数列,则,则该设备使用年的营运费用总和为,设第n年的盈利总额为,则,故年平均盈利额为,因为,当且仅当时,等号成立,故当时,年平均盈利额取得最大值4.故选:D.【点睛】本题考查等差数列在实际问题中的应用,注意根据题设条件概括出数列的类型,另外用基本不等式求最值时注意检验等号成立的条件.9、C【解析】先求出椭圆的离心率,再由题意得出双曲线的离心率,根据离心率即可求出渐近线斜率得解.【详解】椭圆:的离心率为,则,依题意,双曲线;的离心率为,而,于是得,解得:,所以双曲线的渐近线方程为故选:C10、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A11、C【解析】由,得在上单调递增,并且由的图象是向上凸,进而判断选项.【详解】由,得在上单调递增,因为,所以,故A不正确;对,,且,总有,可得函数的图象是向上凸,可用如图的图象来表示,由表示函数图象上各点处的切线的斜率,由函数图象可知,随着的增大,的图象越来越平缓,即切线的斜率越来越小,所以,故B不正确;,表示点与点连线的斜率,由图可知,所以C正确,同理,由图可知,故D不正确.故选:C12、B【解析】过分别作垂直于准线,垂足为,则由抛物线的定义可得,再过MN的中点作垂直于准线,垂足为,然后利用梯形的中位线定理可求得结果【详解】抛物线=的焦点,准线方程为直线如图,过分别作垂直于准线,垂足为,过MN的中点作垂直于准线,垂足为,则由抛物线的定义可得,因为,所以,因为是梯形的中位线,所以,所以线段MN的中点到y轴的距离为4,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,求出其导数结合条件得出在上单调递减,将问题转化为求解,由的单调性可得答案.【详解】设,则由,则所以在上单调递减.又由,即,即,所以故答案为:14、①.②.【解析】利用题中所给规律求出即可.【详解】解:由图可知,,,,,因为符合等差数列的定义且公差为所以,所以,故答案为:,.15、【解析】由等差数列和等比数列的通项公式,可得,由不在集合中,在集合中,也在集合中,推得不在数列的前50项内,则数列的前50项中包括的前48项和数列中的3和27,结合等差数列的求和公式,即可求解.【详解】由题意,集合构成数列是首项为1,公差为4的等差数列,集合构成数列是首项为1,公比为3的等比数列,可得,又由不在集合中,在集合中,也在集合中,因为,解得,此时,所以不在数列的前50项内,则数列的前50项的和为.故答案为:.16、【解析】由题得,解方程组即得解.【详解】解:由题得,因为是直线的一个方向向量,所以,所以,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)分别求出命题,均为真命题时的取值范围,再求交集即可.(2)利用集合间的关系求解即可.【详解】实数满足不等式,即命题实数满足不等式,即(1)当时,命题,均为真命题,则且则实数的取值范围为;(2)若是的充分不必要条件,则是的真子集则且解得故的取值范围为.【点睛】判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.18、(1)(2)证明见解析,定值为【解析】(1)设出直线的方程并与抛物线方程联立,结合根与系数关系求得.(2)求得过点的抛物线的切线方程,由此求得两点的坐标,通过化简来证得为定值,并求得定值.【小问1详解】依题意可知直线的斜率不为零,设直线的方程为,设,,消去并化简得,所以,所以.小问2详解】抛物线方程为,焦点坐标为,准线,通径所在直线,在抛物线上,且,所以过点的抛物线的切线的斜率存在且不为零,设过点的切线方程为,由消去并化简得,,将代入上式并化简得,解得,所以切线方程为,令得,令得,,将代入上式并化简得,所以为定值,且定值为.19、或【解析】首先根据复数的乘方及复数模的计算公式求出命题为真时参数的取值范围,再根据椭圆的性质求出命题为真时参数的取值范围,依题意为假,为真,即可求出参数的取值范围;【详解】解:因为,,,,所以,所以,所以为真时,因为方程表示焦点在轴上的椭圆,所以,所以,即为真时,所以为假时参数的取值范围为或,因为命题为真,命题或为真,所以为假,为真,或20、(1),(2)证明见解析【解析】(1)利用累加法求通项公式,利用通项公式与前n项和公式的关系可求的通项公式;(2)求出并判断其范围,求出,利用裂项相消法求的前n项和即可证明.【小问1详解】由题可知,当n≥2时,=当n=1时,也符合上式,∴;当时,,当n=1时,也符合上式,∴;【小问2详解】由(1)知,∴,∵,;∵,,,,,∴设为数列的前n项和,则.21、(1)an=n(2)【解析】(1)由已知条件可得(d+2)2=2d+7,从而可求出公差,进而可求得数列的通项公式,(2)由(1)得,然后利用错位相减法求【小问1详解】因a1,a2+1,a3+6成等比数列,所以又a1=1,所以(d+2)2=2d+7,所以d=1或d=(舍),所以an=n;【小问2详解】因为,所以,所以,所以所以22、(1);(2)为等边三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,从而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;联立①②可求得b=c=,从而可判断△ABC的形状【详解】(1)由(2b﹣c)cosA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论